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Abstract—Exploitation of heap vulnerabilities has been on the
rise, leading to many devastating attacks. Conventional heap
patch generation is a lengthy procedure requiring intensive man-
ual efforts. Worse, fresh patches tend to harm system depend-
ability, hence deterring users from deploying them. We propose
a heap patching system HEAPTHERAPY+ that simultaneously
has the following prominent advantages: (1) generating patches
without manual efforts; (2) installing patches without altering the
code (so called code-less patching); (3) handling various heap
vulnerability types; (4) imposing a very low overhead; and (5) no
dependency on specific heap allocators. As a separate contribution,
we propose fargeted calling context encoding, which is a suite of
algorithms for optimizing calling context encoding, an important
technique with applications in many areas. The system properly
combines heavyweight offline attack analysis with lightweight
online defense generation, and provides a new countermeasure
against heap attacks. The evaluation shows that the system is
effective and efficient.

Index Terms—Heap memory safety, automatic patch genera-
tion, dynamic analysis, calling context encoding.

I. INTRODUCTION

As many effective measures for protecting call stacks get
deployed (such as canaries [1], reordering local variables [2],
and Safe SEH [3]), heap vulnerabilities gain growing attention
of attackers. Heap vulnerabilities can be exploited by attackers
to launch vicious attacks. The recent Heartbleed [4] and
WannaCry [5] attacks demonstrate the dangers. For instance,
the WannaCry ransomware uses the EternalBlue exploit, which
makes use of a heap buffer overwrite vulnerability to hijack the
control flow of the victim program [5]. It is notable that heap
memory vulnerabilities nowadays are frequently exploited to
launch ROP-based attacks [6], which makes heap memory
protection an even more urgent and important task.

There are a variety of heap vulnerability types. The follow-
ing types are among the most commonly exploited types.' (1)
Buffer overflow: it includes both overwrite and overread. By
overwriting a buffer, the attack can manipulate data adjacent to
that buffer and launch various control-data or non-control-data
attacks, while exploitation of overread can steal sensitive in-
formation in memory, such as address space layout and private
keys. (2) Use after free: it refers to accessing memory after
it has been freed. If the memory space being reused is under

'Double free was frequently exploited; but many popular allocators, such
as the default allocator in glibc [7], have built-in double free detection now.

the control of attackers, use-after-free bugs can be exploited
to launch various attacks, such as control flow hijacking. (3)
Uninitialized read: exploitation of such vulnerabilities can
leak sensitive information.

Many approaches have been proposed to tackle heap vul-
nerabilities. A large body of research focuses on detecting,
preventing or mitigating heap attacks (and other memory-
based attacks) [8]-[25]. They usually incur a large overhead
or/and can only handle a specific type of heap vulnerabilities.
For example, MemorySanitizer [20] is a dynamic tool that
detects uninitialized read; however, it incurs an average of
2.5x of slowdown and 2x of memory overhead. AddressSani-
tizer [8], which detects overflows and use after free online, is
deemed fast, but still incurs 73% slowdown and 3.4x memory
overhead. As another example, HeapTherapy [19] proposes an
efficient heap buffer overflow detection and response system;
however, it does not detect and handle uninitialized read and
use after free.

When examining the spectrum of heap security measures,
we notice that handling heap vulnerabilities through patching
has been much less studied. Patching, however, is an indis-
pensable step for handling vulnerabilities in practice. Over
decades, conventional patch generation and deployment have
suffered serious limitations. First, the patch generation is a
lengthy procedure. Even for security sensitive bugs, it takes
those big vendors 153 days on average from vulnerability
report to patch availability [26]. A study finds that only 65% of
vulnerabilities in software running on a typical Windows host
have patches available at vulnerability disclosure [27]. This
provides opportunities for attackers to exploit the unpatched
vulnerabilities on a large scale [28]. For resource-constrained
small software companies, it takes even longer time.

Second, given a vulnerability, its fresh patches may have not
been thoroughly tested, and thus tend to introduce stability
issues and even logic errors. Although waiting for mature
patches can reduce the risk, it makes the exploitation window
longer. This has been a dilemma in patch deployment [29].

We propose a heap patching system that does not have the
limitations above. Our insight is that, by changing the configu-
ration of heap memory allocation, all the aforementioned heap
vulnerabilities can be addressed without altering the program
code and, hence, no new bugs are introduced. According to the
configuration information, the allocator enhances its handling



(i.e., allocation, initialization and deallocation) of buffers that
are vulnerable to attacks, called vulnerable buffers and, more
importantly, applies security enhancement only to them (rather
than all buffers) to minimize the overhead. We refer to it as
Heap Patches as Configuration.

We accordingly build our system HEAPTHERAPY+. Unlike
HeapTherapy [19], which generates defenses for overflow
bugs by combining online in-memory trace collection and
post-mortem core dump analysis, HEAPTHERAPY+ consists of
a heavyweight offline patch generation phase and a lightweight
online defense generation phase. In the offline patch generation
phase, we use shadow memory to scrutinize attacks and
achieve bit precision level. We group buffers according to
their allocation-time calling contexts. Buffers that share the
same calling context as the buffer exploited by the attack
are regarded as vulnerable buffers. The calling context along
with other information is collected to generate patches, i.e.,
the configuration information. Next, in the online defense
generation phase, the configuration information is loaded and
the stored calling context information guides the allocator to
recognize vulnerable buffers. It properly combines detailed and
powerful offline analysis and highly efficient online defenses.

However, if call stack walking (as used by gdb) is used for
obtaining calling contexts, it can incur significant slowdown,
especially for allocation-intensive programs [30]-[33]. We
thus use calling context encoding, which continuously repre-
sents the current calling context in one or a few integers [30].
By reading the integer(s), the encoded calling context, called
Calling Context ID (CCID), can be obtained. By comparing
the CCID for the current buffer allocation with the CCIDs
stored in the patches, the online system can swiftly determine
whether the new buffer is vulnerable.

Moreover, we propose targeted calling context encoding,
which is a suite of algorithms that can optimize many
well-known calling encoding methods, such as PCC [30],
PCCE [31], and DeltaPath [32]. Since calling context encoding
is an important technique with many applications, the opti-
mization algorithms constitute a separate contribution.

Installing a heap patch does not change the program code.
Specifically, a heap patch is in the form of a (key,value)
tuple, where the key is the allocation-time CCID of the
vulnerable buffer and the value indicates the vulnerability type
and the parameter(s) for applying the online defense. The
patches are read into a hash table upon program initialization.
It thus takes only O(1) time to determine whether a new buffer
is vulnerable. The online defense is enforced by intercepting
heap buffer allocation and deallocation. Both the hash table
initialization and the buffer allocation/deallocation interception
are implemented in a shared library, and are transparent to the
underlying heap allocator. We thus do not need to modify the
heap allocator or depend on a specific allocator.

None of the techniques used in HEAPTHERAPY+, except
for targeted calling context encoding, is new. However, static
analysis, code instrumentation, offline attack analysis, and
online defense generation are creatively combined to build a
new countermeasure against heap attacks. A comprehensive

evaluation is performed, showing that HEAPTHERAPY+ is
effective and efficient. We make the following contributions.

« We properly combine heavyweight offline attack analysis
and lightweight online defense generation to build a new
heap defense system that simultaneously demonstrates
the following good properties: (1) patch generation with-
out manual efforts, (2) code-less patching, (3) versatile
handling of heap buffer overwrite, overread, use after
free, and uninitialized read, (4) imposing a very small
overhead, and (5) no dependency on specific allocators.

o We propose targeted calling context encoding, a suite of
algorithms that can optimize calling context encoding,
and demonstrate its application to our system.

II. RELATED WORKS

Given the large body of research on heap memory safety,
we do not intend to make an exhaustive list of work on
the problem. Instead, we compare HEAPTHERAPY+ with
other automatic patch generation techniques, and then examine
critical techniques used in our system.

A. Automatic Patch/Defense Generation

With attack inputs in hand, generating patches/defenses au-
tomatically has been a highly desired goal. We divide previous
researches towards this goal into the following categories.

Bytes pattern based signature generation. Given a large
number of attack inputs, many systems (such as Honey-
comb [34], Autograph [35], and Polygraph [36]) generate sig-
natures by extracting common bytes patterns from the inputs.
However, such methods usually need many attack samples in
order to correctly mine patterns, and cannot work when only
one or very few attack inputs are available. False positives may
be raised when benign inputs happen to match the signatures.
Plus, attackers can mutate the inputs to bypass the detection.
In addition, these systems usually have deployment difficulty
in handling compressed or encrypted inputs.

Semantics based signature generation. Tools like COV-
ERS [37], Hamsa [38], TaintCheck [39] and the work by
Xu et al. [40] propose methods to generate semantics-based
signatures; e.g., spotting the target system call ID used upon
control flow hijacking and filtering out inputs that contain the
ID. They are very effective in handling certain control flow
hijacking attacks, but it is unknown how they can be applied
to addressing overread and uninitialized read. They also have
deployment difficulty in handling compressed and encrypted
attack inputs and may incur false positives.

Tracking faulty instructions. By replaying the attacks, some
systems try to pinpoint faulty instructions that are exploited
by the attacks and try to generate patches to fix them; such
systems include VSEF [41], Vigilant [42], PASAN [43] and
AutoPag [44]. A frequently employed insight is that a tainted
input, e.g., due to overwrite, should not be used to calculate
the indirect jump address. It is unknown how such systems
can handle attacks beyond control flow hijacking, e.g., buffer



overread attacks. Plus, the deployment of the patches requires
code update, just like conventional code patching.

Trial and error for patch generation. Some systems propose
genetic programming based program generation [45], template
based patch generation [46], and patch generation via machine
learning [47] to generate many patches, and test each of them
against prepared fest cases until one patch passes all of them.
However, it usually takes a lot of effort to prepare well-
structured test cases with a decent test coverage. Other systems
keep generating candidate patches based on certain criteria
until one can recover the program execution [48], [49]. There
is no guarantee a patch can be generated using these methods,
and the generated patch may introduce logic errors.

While there are many works on automatic defense/patch
generation, most of the proposed systems suffer one or more
of the following limitations: deployment difficulties, false
positives, requiring many attack inputs or test cases. Unlike ex-
isting automatic patch generation systems, HEAPTHERAPY+
supports easy deployment without code updates, guarantees
zero false positives, requires only one attack input, and handles
multiple types of heap vulnerabilities.

B. Calling Context Encoding

A calling context is the sequence of active function calls
on the call stack. It carries critical information about dynamic
program behavior. It thus has been widely used in debugging,
testing, anomaly detection, event logging, performance opti-
mization, and profiling [32]. For example, logging sensitive
system calls is a practice in many systems. Recording the call-
ing context of the system call provides important information
about the sequence of program components that gets involved
and leads to the call.

Obtaining calling contexts through stack walking is straight-
forward but very expensive [30]. A few encoding techniques,
which represent a calling context using one or very few inte-
gers, have been proposed to continuously track calling contexts
with a low overhead. The probabilistic calling context (PCC)
technique [30] computes a probabilistically unique integer
ID, essentially a hash value, for each calling context, but
does not support decoding. Precise calling context encoding
(PCCE) [31] stems from path profiling [50] and supports
decoding. DeltaPath [32] improves PCCE by supporting vir-
tual function calls and large-sized programs. A relevant but
different problem is path encoding [50], which represents
execution paths (within a control flow graph) into integers.

Similar to targeted calling context encoding, another
work [51] also aims to minimize the encoding overhead but
uses a very different idea. It performs offline-profiling runs
to establish the mappings between stack offsets and calling
contexts. It fails if the calling context of interest does not
appear in the profiling runs. Its reported decoding failure rate
is as high as 27%. Finally, it does work if variable-size local
arrays (allowed in C/C++) are used.

C. Calling Context-Sensitive Defenses

Calling context was applied to various areas beyond de-
bugging decades ago. As an example, a region-based heap
allocator tags heap objects with allocation-time calling con-
texts [52]. Recently, calling context is used to generate context
sensitive defenses [19], [33], [40], [41], [53]. In particular,
Exterminator [33] also generates context-sensitive heap de-
fenses. However, our system HEAPTHERAPY+ differs from
Exterminator in multiple aspects. (1) Exterminator performs
online probabilistic attack detection (e.g., when an overflow
occurs, it may or may not detect it), while HEAPTHER-
APY+ performs offline deterministic attack analysis and patch
generation. How to apply patches generated by heavyweight
offline analysis to lightweight online defense generation is
non-trivial and solved by our work. (2) Exterminator does not
handle overread or uninitialized-read, while HEAPTHERAPY +
handles all the frequently exploited heap vulnerability types
including overwrite, overread, use after free, and uninitialized
read. (3) Exterminator relies on a custom heap allocator that
incurs large overheads, while HEAPTHERAPY+ does not; the
defense of HEAPTHERAPY+ is transparent to the underlying
allocator. (4) Exterminator uses the expensive stack walking
to retrieve calling contexts, while rargeted calling context
encoding is proposed and used in HEAPTHERAPY+. But the
two works share the insight in calling context-sensitive heap
patches, which we do not claim as our contribution.

D. Shadow Memory

Our offline heavyweight analysis makes use of shadow
memory [54], which tags every byte of memory used by a
program with some information. For example, by tagging a
memory region as inaccessible, a read zone is created. Despite
its powerful capabilities in dynamic analysis, it incurs very
high overheads. The implementation in Memcheck, which is
built in Valgrind, incurs 22.2x slowdown [54]. AddressSani-
tizer improved it significantly with many functionalities cut,
but still incurs 73% speed slowdown [8]. Our system extends
shadow memory by associating every heap buffer with its
calling context ID.

HEAPTHERAPY+ does not propose new techniques ex-
cept targeted calling context encoding, but properly combines
heavyweight offline analysis (based on shadow memory) and
lightweight online defenses (based on allocation/deallocation
interception and calling context encoding). It resolves the chal-
lenge of applying offline analysis results to online defenses.

III. PROBLEM STATEMENT AND ARCHITECTURE
A. Problem Statement

Similar to conventional patch generation, our system uses
collected inputs that reproduce the bug for vulnerability inves-
tigation and patch generation. Given a program [P that contains
a heap vulnerability V' and an attack input Z that exploits
V,? our system outputs a patch P, which, once installed, can

2 Actually, an attack input is not required. “Steps to reproduce”, which is a
regular part of a bug report [55], suffices.
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Fig. 1. System architecture.

defeat attacks that exploit V. We consider the three frequently
exploited heap vulnerability types described in Section I.

But our system differs from conventional patch generation
in the following aspects. (1) Instead of relying on lengthy man-
ual investigation, patches can be generated instantly without
human intervention. (2) Rather than updating the program P
to fix vulnerabilities, patches are written into a configuration
file C to take effect, without introducing new bugs.

B. System Architecture

As shown in Figure 1, the system consists of the fol-
lowing components: (1) A Program Instrumentation Tool:
it builds the calling context encoding capability into the
program (Section IV). Program instrumentation is an one-time
effort. Because of the simplicity of the instrumentation, its
correctness can be verified automatically. The instrumented
program is then used for both offline patch generation and the
online system. (2) An Offline Patch Generator: it automatically
generates the patch by replaying the attack (Section V). (3) An
Online Defense Generator: it is a shared library that (a) loads
the patches from the configuration file C, and (b) intercepts
buffer allocation operations for recognizing vulnerable buffers
and generate defenses online (Section VI).

C. Calling-Context Sensitive Patches

In order to generate a patch P based on attack analysis, it
is critical to extract some invariant among attack instances.
Such invariant then can be used to design protection against
future attacks that also exploit V.

Our observation is that attacks that exploit )V usually share
some attack-time calling context (e.g., the sequence of active
function calls that lead to a buffer overflow due to a memcpy
call). If we trace the program execution backward, these
vulnerable buffers should share the allocation-time calling
context, which we call a vulnerable calling context and can
be used as an invariant to generate the patch P.

IV. TARGETED CALLING CONTEXT ENCODING

Simple call stack walking for retrieving calling contexts
would incur a large overhead, especially for programs with
intensive heap allocations [30]. There exist several efficient
calling context encoding techniques, such as [30]-[32]. We
propose targeted calling context encoding, which is a suite
of algorithms that can be used to optimize these encoding
techniques. The insight is that when the target functions,
whose calling contexts are of interest, are known, many call
sites do not need to be instrumented and thus the overhead
can be significantly reduced. Specifically, if some functions
never appear in the calling contexts that lead to the target
functions, they do not need to be instrumented (Section IV-A);
moreover, if one function has only one call site that can reach
the target function, then its instrumentation can also be pruned
(Sections IV-B and IV-C).

While we believe the optimization algorithms can benefit
other encoding techniques [31], [32], to make the discussion
concrete (and based on our choice of the encoding technique
for heap patching), we use Probabilistic Calling Context
(PCC) [30] to demonstrate the application of the proposed
optimizations. According to PCC, at the prologue of each
function, the current calling context ID (CCID), which is
stored in a thread-local integer variable V, is read into a
local variable t; right before each call site, V' is updated as
V =3t + c, where c is a constant integer unique for each
call site.’> This way, V continuously stores the current CCID.
Hence, the current CCID can be obtained conveniently by
reading V. With PCC, however, it may happen that multiple
calling contexts obtain the same encoding due to hash colli-
sions. It is shown practically and theoretically that the chance
of hash collision is very low [30]. It is worth noting that a hash
collision in our system means that a non-vulnerable buffer may
be recognized as a vulnerable buffer and get enhanced. Any
of our enhancements do not change the program logic, so a
hash collision can cause unnecessary overhead, but does not
affect the correctness of our system.

We call the original encoding algorithm that take all the
call sites into consideration as Full-Call-Site (FCS) instru-
mentation. The three famous encoding algorithms, PCC [30],
PCCE [31] and DeltaPath [32] all enforce FCS. Figure 2(a)
shows that all the call sites in those red nodes are instrumented,
and 73 and 75 are the target functions. The less call sites are
instrumented, the smaller overhead is incurred.

A. Targeted-Call-Site (TCS) Optimization

FCS blindly instruments all the call sites in a program. In
practice, very often users are only interested in the calling
contexts that end at one of a specific set of target functions,
such as security-sensitive system calls and critical transaction
calls. In our case, we are only interested in calling con-
texts when the allocation APIs (such as malloc, calloc,
calloc, memalign, aligned_alloc) are invoked. It is

3The encoding in PCCE [31] and DeltaPath [32] basically adopts V' = t+c,
where c is calculated according to their encoding algorithms.
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Fig. 2. Comparison of different encoding optimization algorithms using an
example call graph. The gray nodes, 77 and 7%, are target functions; red
nodes indicate functions whose call sites are instrumented; and white nodes
indicate functions whose call sites are not instrumented. For the simplicity of
presentation, the example does not include back edges. Our algorithms can
handle back edges without problems as shown in Algorithm 1.

unnecessary to instrument functions that may never appear in
the call stacks when these target functions are invoked.

We thus propose the first optimization, Targeted-Call-Site
(TCS), where only the call sites that may appear in the calling
contexts of target functions are instrumented. To conduct the
TCS optimization, reachability analysis on the call graph of the
program is performed. Given a call graph G = (V, E), where
V' is the set of nodes representing functions of the program
and FE the set of function calls, and a set of functions F, we
perform reachability analysis to find edges that can reach any
of the functions in F, and only call sites corresponding to
these edges are instrumented.

Figure 2(b) shows the instrumentation result of TCS. As the
edges DH and HI cannot reach any of the target functions
Ty and T5, they are pruned from the instrumentation, reducing
the set of call sites that need to be instrumented.

B. Slim Optimization

On the basis of TCS, there is still potential to further prune
the set of call sites to be instrumented. In a call graph, a node
can be classified as either a branching or non-branching one:
a branching node is one that has multiple outgoing edges that
can reach (one of) the target functions. Our insight is that the
purpose of call site instrumentation is to make sure different
calling contexts can obtain different encoding values; given a
non-branching node, whether or how its contained call sites
are instrumented does not affect the distinguishability of the
encoding results. Thus, we propose to avoid instrumenting the
call sites in those non-branching nodes.

For example, as shown in Figure 2(c), according to the Slim
optimization, all call sites in the non-branching nodes, B and
FE, are excluded from the instrumentation set.

C. Incremental Optimization

The two optimization algorithms treat all target functions as
a whole. Our another insight is that when the call to a target
function is intercepted for analysis or logging purpose, the
analyzer or logger usually knows the target function. In our

case, when malloc and memalign are intercepted, different
interception functions will be invoked.

Therefore, we can use the pair of ( Target_fun, CCID
) (rather than CCID alone) to distinguish different calling
contexts. Based on this insight, we propose another opti-
mization algorithm that can further reduce the number of
instrumented call sites. A node is a true branching node if
it has two or more outgoing edges that reach the same target
function. That is, if a node has multiple outgoing edges, each
of which reaches a different target function, it is called a false
branching node. The idea of the Incremental encoding is to
avoid instrumentation the call sites in a false branching node.

In Figure 2, node A is a true branching node, as its two
outgoing edges can reach the same node 77 (and 75 as well).
So is node C, as its two outgoing edges can reach 73. Thus,
only the call sites that correspond to AB, AC, CE, C'F need
to be instrumented. Take the calling contexts of 75 as an
example, the instrumentation at AB and AC' is sufficient to
distinguish the two calling contexts that reach T5.

Algorithm 1 Incremental Optimization.

Input: A call graph CG = (N, E), and the set of target functions
T C N, where N is the set of functions and E edges.
Output: The edges in E to be instrumented.

1: function FILTER(T,CG = (N, E)):

2 InstrumentationSet < {}

3 for t € T do

4: VisitedNodes < {}

5: Queue.push(t)

6: for n < Queue.pop() do

7 VisitedNodes.push(n)

8: for each e = (m,n) of the incoming edges of n do
9: if m ¢ VisitedNodes then
10 Queue.push(m)
11: for n € VisitedNodes do
12: ReachingEdgesSet + {}
13: for each e = (n,m) of outgoing edges of n do
14: if m € VisitedNodes then
15: ReachingEdgesSet.push({n, m))
16: if ReachingEdgesSet.size() > 1 then
17: InstrumentationSet.push(Reaching EdgesSet)
18: return InstrumentationSet

Algorithm 1 shows the algorithm for incremental optimiza-
tion. Line 3 illustrates the idea of processing each target
function incrementally. For each target function, Lines 4—17
are to find true branching nodes relative to it. Specifically,
Lines 4-10 are a backward breadth-first search; as it omits
nodes already visited (Line 9), it can correctly handle back
edges. Then Lines 11-17 are to find true branching nodes.

V. OFFLINE ATTACK ANALYSIS AND PATCH GENERATION

The Offline Patch Generator component runs the vulnerable
program using the attack input and generates the patch as part
of the dynamic analysis report. It is built on dynamic binary in-
strumentation and shadow memory of Valgrind [54]. As shown
in Figure 3, for every bit of the program memory, a Validity bit
(V-bit) is maintained to indicate whether the accompanying bit
has a valid value (i.e., initialized); instructions are inserted for
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typedef struct {
uint32_t i;
uint8_t c;

}OA;

Ay, *p = (A x) malloc( sizeof (A) );
p—>i = 0; p—>c = "£f’;

Yy = *p;

Fig. 4. Legal uninitialized read due to padding.

the propagation of V-bits when data copy occurs (e.g., when a
word is read from memory to a register); for every byte of the
memory location, an Accessibility bit (A-bit) is maintained to
indicate whether the memory location can be accessed.

When a heap buffer is allocated, the returned memory is
marked as accessible but invalid. Each buffer is surrounded
by a pair of red zones (16 bytes each), which are marked
as inaccessible. When a heap buffer is free-ed, its memory
is set as inaccessible. In addition, whenever a heap buffer is
allocated, the current calling context ID (CCID) is recorded
and associated with the buffer.

(1) Detecting overflows: A buffer overflow will access the
inaccessible red zone appended to the buffer and get detected.

(2) Detecting use after free: A free-ed buffer is set as
inaccessible and then added to a FIFO queue of freed blocks.
Thus, the memory is not immediately made available for reuse.
Any attempts to access any of the blocks in the queue can be
detected. The maximum total size of the buffers in the queue is
set as 2GB by default, which is large enough for the exploits
we investigated, and can be customized. In Section IX, we
discuss how to handle it if the quota is insufficient.

(3) Detecting uninitialized read: To detect uninitialized read,
an attempt is to report any access to uninitialized data, but this
will lead to many false positives. For instance, given the code
snippet in Figure 4, most of the compilers will round the size
of A to 8 bytes; so only 5 bytes of the heap buffer is initialized
(and the V-bits for the remaining 3 bytes are zero), while the
compiler typically generates code to copy all 8 bytes for y
*xp, which would cause false positives due to accessing the 3
bytes whose V-bits are zero. To avoid false positives due to
padding, we check the V-bit of a value only when it is used to
decide the control flow (e.g., jnz), used as a memory address,
or used in a system call (as the kernel behavior is not tracked).
As every bit of the program has a V-bit, bit-precision detection
of uninitialized read is achieved. Moreover, origin tracking is

Configuration file

<memalign, 1854955292, OVERFLOW>
<calloc, 8643565443, USE-AFTER-FREE>
<malloc, 2598251483, UNINITIALIZED-READ>

U

Read by Online
Defense Generator

Hash table
Key Value
<MEMALIGN, 1854955292> (001),
<CALLOC, 8643565443> (010),
<MALLOC, 2598251483> (100),

Fig. 5. Patches read into a hash table.

used to track the use of invalid data back to the uninitialized
data (such as a heap buffer) when a warning is raised, which
allows us to retrieve the allocation-time CCID associated with
the vulnerable buffer.

When an attack is detected, the patch is generated in

the form of ( FUN, CCID, T), where FUN is the func-
tion used to request the heap buffer (such as malloc,
memalign), CCID is an integer representing the allocation-
time calling context ID of the vulnerable buffer, and T is a
three-bit integer representing the vulnerability type (the three
bits are used to indicate OVERFLOW, USE-AFTER-FREE,
UNINITIALIZED-READ, respectively). Example patches are
shown in the upper graph in Figure 5.
How to handle realloc: If the new size is smaller than the
original size, the cut-off region is marked as inaccessible. If
the new size is larger, the added region is set as accessible but
invalid. The allocation-time CCID associated with the buffer
is also updated with the value upon the realloc invocation.
How to handle multiple vulnerabilities: An attack input may
exploit multiple vulnerabilities. For example, the Heartbleed
attack exploits both uninitialized read and overread. In order to
handle the case that an attack exploits multiple vulnerabilities,
we resume the program execution upon warnings. Plus, once
the V bits for a value have been checked, they are then set to
valid; this avoids a large number of chained warnings. Finally,
a script is used to process the many warnings according to
the origin (i.e., the vulnerable buffer) of those warnings and
generate patches.

VI. CODE-LESS PATCHING AND ONLINE DEFENSES

When the patched program is started, as shown in Figure 5,
the Online Defense Generator library has an initialization
function* that reads patches from the configuration file and
stores them into a hash table, where the key of each entry
is ( ALLOCATION_FUNCTION, CCID) and the value is the
vulnerability type(s) and parameters, if any, for generating
online defenses. Note once the hash table is initialized, its
memory pages are set as read only.

The Online Defense Generator library intercepts all heap
memory allocation operations. Whenever a heap buffer is
allocated, the name of the allocation function along with the

4__attribute__ ((constructor)) is used to declare the function.
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Fig. 6. Buffer structures. Note how we pack the metadata into only one word
(64 bits) preceding the user buffer.

current CCID is used to search in the patch hash table, which
takes only O(1) time. If there is no match, the buffer does not
need to be enhanced; otherwise, the buffer is enhanced based
on the associated vulnerability type(s) and parameters.

Several considerations make the design of online defenses
challenging. (1) In some cases, the same buffer may be
vulnerable to multiple attacks, such as uninitialized read and
overflow. (2) In addition to handling malloc and free, the
system needs to support a family of other allocation functions,
such as realloc and memalign (aligned allocation). These
challenges are well resolved by our system. Another com-
plexity is that we maintain heap metadata ourselves, such as
the buffer size (to support realloc correctly), vulnerability
type(s), the buffer alignment information, and the location of
the guard page, so that our system can work without having
to change the underlying allocator or rely on its internals.

(1) Handling overflows: If the buffer is vulnerable to over-
flows, a guard page is appended to it to prevent such attacks.
While the guard page can effectively prevent overflows, they
are known to be prohibitively expensive when being applied
to every buffer. In our system, however, the guard page
is precisely applied to vulnerable buffers, and the resulting
overhead is dramatically reduced.

As shown in Figure 6, Structure 2 is used for non-aligned
buffers, while Structure 4 is used for aligned buffers (allocated
using memalign, etc.). When a heap allocation request is
intercepted, the requested size is increased to accommodate the
word for metadata and the guard page (as well as necessary
padding following the user buffer to ensure the guard page is
page aligned). The address of the user buffer is returned to
service the user program.

TABLE I

A SUMMARY OF THE USE OF BUFFER STRUCTURES.

Vulnerability type

Not aligned

Aligned

Not Vulnerable

Structure 1

Structure 3

Overflow

Structure 2

Structure 4

Use-after-free

Structure 1

Structure 3

Uninitialized read

Structure 1

Structure 3

Overflow &
Use-after-free

Structure 2

Structure 4

Overflow &
Uninitialized read

Structure 2

Structure 4

Use-after-free &

Uninitialized read Structure 1 Structure 3
Overflow &
Use-after-free & Structure 2 Structure 4

Uninitialized read

The metadata word contains rich information and is worth
detailed interpretation. (1) In all structures, the least significant
four bits is called the buffer type field, where three bits
represent the vulnerability type (one bit is used to indicate
each of the three vulnerability types, i.e., Overflow, Use
after Free, and Uninitialized Read) and one bit
indicates whether the buffer is aligned. (2) 36 bits are used
to indicate the location of the guard page. Currently, 64-bit
operations systems only use a 48-bit virtual address space;
plus, a guard page is 4KB=2'2B aligned. Thus, 48 — 12 = 36
bits are sufficient. A guard page is set as inaccessible using
mprotect. The user buffer size information is stored as the
first word of the guard page, and it is needed for supporting
realloc. (3) If the buffer is aligned (Structure 3 and
Structure 4), there is a padding field whose size depends on
the alignment size. The alignment size information is needed
to determine the buffer address given the address of the User
Buffer upon a free call. As the alignment size is always
a power of two (i.e., 2™), we only need 6 bits to store the
value of n € [0,64], which then can be used to calculate the
alignment size.

(2) Handling use after free: If an allocation is not aligned, the
buffer takes Structure 1; otherwise, Structure 3. The metadata
word uses 48 bits to store the user buffer size. When a buffer
vulnerable to use after free is to be free-ed, it is put into an
FIFO queue of freed blocks to defer the reuse.

In our system, only buffers vulnerable to use-after-free are
put into the queue, such that given the same quota the time
a freed buffer stays in the queue is much lengthened, which
hence significantly increases the difficulty of exploitation of
a use-after-free vulnerability for it increases the uncertainty
entropy a freed buffer is reused by attackers.

(3) Handling uninitialized read: Similar to the above, if
the allocation is not aligned, the buffer takes Structure 1;
otherwise, Structure 3. The user buffer region is initialized
with zeros before it is returned to the user program.

Table I summarizes how different buffer structures are
used for handling different cases, including when multiple
vulnerabilities affect the same buffer. If there is a threat of
overflow, Structure 2 or Structure 4 is used to accommodate
the guard page depending on whether the allocation call is
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memalign. Whenever there is use after free, upon being freed
the buffer is put into the freed-blocks queue to defer the reuse
of these buffers.

How to handle free () calls? A particular advantage of
our system is that it supports the deployment of heap patches
without modifying the underlying allocator. It works solely by
intercepting the memory allocation calls. On the other hand,
it complicates the handling of freeing buffers.

As shown in Figure 7, when free (p) is invoked the
Online Defense Generator intercepts the call and handles it
as follows. (1) If the Overflow bit in the metadata word is set,
the location information of the guard page is retrieved and the
guard page is set as accessible using mprotect. (2) Based on
the user buffer address p, the initial address of the buffer pi is
calculated. Specifically, if the buffer was not allocated using
memalign, pi = p — sizeof (void=); otherwise, the
alignment size A is retrieved and pi = p — A. (3) If the
Use-after-Free bit is set, the block is put into the queue of
the freed blocks; otherwise, the buffer is released using the
original free API of the underlying allocator.

VII. OTHER IMPLEMENTATION DETAILS

Program Instrumentation Tool. We add a pass into LLVM,
which performs the call graph analysis to determine the
set of call sites to be instrumented and then instruments
them. This implementation has the limitation of requiring the
program source code to be available. Given the simplicity of

TABLE II
VULNERABLE PROGRAMS USED IN THE EVALUATION. UR AND RAF STAND
FOR UNINITIALIZED READ AND USE AFTER FREE, RESPECTIVELY.

Program Vulnerability Reference

Heartbleed UR & Overflow CVE-2014-0160

bc-1.06 Overflow Bugbench [57]
GhostXPS 9.21 UR CVE-2017-9740
optipng-0.6.4 UaF CVE-2015-7801
tiff-4.0.8 Overflow CVE-2017-9935
wavpack-5.1.0 UaF CVE-2018-7253
libming-0.4.8 Overflow CVE-2018-7877
SAMATE Dataset Variety 23 heap bugs [58]

the analysis and instrumentation, we suppose a binary-only
implementation path (e.g., via Dyninst [56]) is viable.

Offline Patch Generator. This component is built on the basis
of Valgrind [54]. We reuse its shadow memory functionality
and modify the tool to handle allocation and deallocation.
Significant effort has been saved by making use of Valgrind,
which in the meanwhile is a mature dynamic analysis tool.
The implementation over Valgrind thus benefits us to analyze
various complex real-world programs successfully.

Online Defense Generator. It is implemented as a shared
library, which reads the patches in the configuration file to
the hash table. Once the initialization is done, the hash table
memory pages are set as read-only. The library also interposes
the buffer allocation calls (such as malloc and free) to
enforce the runtime protection. Note that malloc and free
are usually implemented in a shared library, typically libc.
Thus, as long as our shared library (which also implements
malloc and free) is loaded before 1ibc, calls to these
functions will be dispatched to our library. In Linux, by spec-
ifying our shared library during compilation using LDLIBS+=
(or loading it using LD_PRELOAD), we can ensure it is loaded
before 1ibc. Our implementation of malloc and free,
in addition to enforcing the protection, invokes libc APIs to
perform the real allocation/deallocation. So it does not change
the underlying heap allocator or rely on its internals.

VIII. EVALUATION

We have evaluated HEAPTHERAPY+ in terms of both
effectiveness and efficiency. We not only evaluate it on the
SPEC CPU2006 benchmarks and many vulnerable programs,
but also run the system with real-world service programs. Our
experiments use a machine with a 2.8GHZ CPU, 16G RAM
running 16.04 Ubuntu and Linux Kernel 4.10.

A. Effectiveness

To evaluate the effectiveness of our system HEAPTHER-
APY+, we run it on a series of programs, as shown in Table II,
which contain a variety of heap vulnerabilities. We aim to
evaluate (1) whether the Offline Patch Generator can correctly
determine the vulnerability type and generate patches; and (2)



whether the generated patches can effectively prevent attacks
from exploiting those heap vulnerabilities.

Heartbleed Attacks. Heartbleed was a notorious vulnerability
of OpenSSL and affected a large number of services [59].
By sending an ill formed heartbeat request and receiving
the response, the attacker can steal data from the vulnerable
services, such as private keys and user account information.
While Heartbleed is widely known as a heap buffer over-read
vulnerability, actually the attacker can exploit two different
vulnerabilities: over-read and uninitialized read. Specifically,
the vulnerable heap buffer has 34KB, while the size [ of the
data stealing from the buffer can be up to 64KB. If [ < 34K,
the attack is just an uninitialized read that leaks data previously
stored in the buffer; otherwise, it is a mix of uninitialized read
and over-read [60].

A service was created using the OpenSSL utility
s_server.” We then collected different attack inputs from
Internet, and used one of them to generate the patch. Our
Offline Patch Generator correctly identified it as a mix of
uninitialized read and overflow and output the patch. The patch
was then automatically written into the configuration file of
the Online Defense Generator, which was able to precisely
recognize and enhance the vulnerable buffers. We then tried
different attack inputs, and no data was leaked except for the
zeros filled in the buffers.

bc-1.06. bc, for basic calculator, is an arbitrary-precision
calculator language. Some versions of its implementation
contain a heap buffer overflow vulnerability. We obtained a
buggy version of this program from BugBench, a C/C++ bug
benchmark suite [57], and collected a malicious input that
overflows buffers and corrupts the adjacent data. By feeding
the input into our Offline Patch Generator that ran the buggy
program, an overflow patch was generated. With the patch
deployed, our system successfully stopped the attack before it
corrupted any data.

GhostXPS 9.21. GhostXPS is an implementation of the Mi-
crosoft XPS document format built on top of Ghostscript,
which is an interpreter/renderer for PostScript and normalizing
PDF files. It is the leading independent interpreter software
with the most comprehensive set of page description languages
on the market today. Some versions of GhostXPS contain an
uninitialized read vulnerability that can be exploited using a
crafted document. We collected a buggy version of GhostXPS
from their git repository and the malicious document input.
In the offline patch generation phase, the uninitialized read
attack was detected and a patch was generated. During the
online heap protection phase, the attack was not able to steal
any data, except for zeros, from memory.

optipng-0.6.4. OptiPNG is a PNG image optimizer that
compresses image files to a smaller size without losing any
information. Specific versions of this optimizer allow the
attacker to exploit a use-after-free vulnerability and execute

SIn order to support the interposition of the allocation operations, we
compiled OpenSSL using the OPENSSL_NO_BUF_FREELIST compilation
flag to disable the use of freelists.

arbitrary code via crafted PNG files. We collected a vulnerable
version (optipng-0.6.4) and a malicious PNG image.
The Offline Patch Generator correctly identified the attack
and generated a patch. The Online Defense Generator made
use of the patch to recognize the vulnerable buffers and
defeated the use-after-free attacks by deferring the deallocation
of vulnerable buffers.

tiff-4.0.8. TIFF provides support for “Tag Image File
Format”, commonly wused for sorting image data. In
LibTIFF 4.0.8, there is a heap buffer overflow in the
t2p_write_pdf function in tools/tiff-2pdf.c. We
were able to generate the patch, which could successfully
prevent the overflow.

SAMATE Dataset. We evaluated our system on the SAMATE
Dataset, which is maintained by NIST [58] and contains 23
programs with heap buffer overflow, uninitialized read, or use
after free vulnerabilities. Our system successfully generated
patches for all of them and prevented the vulnerabilities from
being exploited.

B. Efficiency

We compared the overhead incurred by the different calling
context encoding algorithms, and measured the overall speed
overhead and memory overhead incurred by our system.
We used our LLVM-based implementation to measure the
efficiency of different calling context encoding algorithms.

1) Overhead Comparison of Different Calling Context En-
coding Algorithms: To measure the execution time overhead
imposed by different calling context encoding algorithms,
we applied them to the programs in the SPEC CPU2006
Integer benchmarks, and measured the execution time when
different encoding techniques were applied, normalized using
the execution time when no encoding is applied. Compared
to FCS (Full Call-Site Instrumentation) proposed in [30],
which incurred 2.4% of slowdown for C/C++ programs, the
other three encoding algorithms proposed by us, that is, TCS
(Targeted Call-Site Instrumentation), Slim, and Incremental,
incurred 0.6%, 0.5%, and 0.4% of slowdown, receptively.
While the saved execution time itself is small, it gains up to
6x of speed up. We believe the proposed encoding algorithms
can have many applications far beyond memory protection;
plus, when they are applied to Java programs, where FCS may
incur more than 35% of overhead [32], the speed up due to
our algorithms could make a significant difference.

As the encoding works by inserting instructions into the
programs, we also measured the program size increase. The
results are shown in Table III. While FCS increased the
binary size by an average of 12% when compared to the
uninstrumented binaries, TCS, Slim and Incremental incurred
only 6%, 4.5%, and 4.4% of size increase, respectively.

2) Efficiency of HEAPTHERAPY+: To evaluate the run-
time overhead, we ran our system on both SPEC CPU2006
Integer benchmarks and a set of real-world service programs.

SPEC CPU2006. The speed overhead incurred by



TABLE III
SPEC CPU2006 BENCHMARK PROGRAM SIZE INCREASE, IN
PERCENTAGE, DUE TO DIFFERENT ENCODING ALGORITHMS.

Benachmark FCS(%) TCS(%) Slim(%) Incremental(%)
400.perlbench 19.6 16.2 159 15.9
401.bzip2 8.8 0.12 0.12 0.12
403.gcc 18.6 14.7 13.6 13.6
429.mct 0.53 0.53 0.53 0.53
445.gobmk 4.8 32 2.5 2.5
456.hmmer 18.9 5.9 24 1.2
458.sjeng 10.6 0.08 0.08 0.08
462 .libquantum 15 7.7 7.7 7.7
464.h264ref 8.3 3.6 1.8 1.8
471.omnetpp 15.8 7.2 6.7 6.7
473.astar 7.0 7.0 0.2 0.2
483.xalancbmk 14.5 4.1 3.8 3.8

HEAPTHERAPY+ can be divided into four parts: (1)
overhead due to instrumentation, which has been presented
above; (2) overhead due to interposition of heap memory
allocation calls; (3) overhead due to maintaining the meta
data of each buffer (such that our system does not rely on the
internal details of the underlying allocator); (4) overhead due
to patch deployment, which causes the security measures to
be applied to vulnerable buffers.

In order to measure the overhead incurred due to patch
deployment, we select a set of allocation-time CCIDs (Calling-
Context IDs) as hypothesized vulnerable ones as follows. First,
for each benchmark program, we rank all of its allocation-
time CCIDs according to their frequencies during the profiling
execution (that is, how many heap buffers have been allo-
cated under that calling context). Next, we pick the CCIDs
with median frequencies as the hypothesized vulnerable ones.
Finally, we regard the heap buffers with those allocation-
time CCIDs as ones vulnerable to overflows (the other two
vulnerability types are much less expensive to treat), and
generate corresponding patches for them.

Figure 8 shows the measurement results. The overhead due
to interposition is 1.9%, and the overhead for maintaining the
buffer metadata (excluding the interposition overhead 1.9%
and calling context encoding overhead 0.4%) is 2.0%. Note
that the two parts of overhead can be largely eliminated if
our system is integrated into the underlying heap allocator.
When zero patch is installed, the overhead is 4.3%. When one
patch is installed, the overhead increases by only 0.4% (and
reaches 4.7%). The total overhead is 5.2% when five patches
are installed. One outlier is 400 . per1lbench, which has the
most intensive heap allocations. Table IV records the heap
allocation statistics for each SPEC CPU2006 benchmark.

We also measured the memory consumption of benchmark
programs, and used a script that can compute the memory
overhead in terms of the average Resident Set Size (RSS)
for the benchmark programs. That script reads the VmRSS
field of /proc/[pid]/status. The sampling rate is 30
times per second, and the average of the readings is reported.
Figure 9 shows the memory consumption overhead normalized
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TABLE IV
SPEC CPU2006 BENCHMARK HEAP ALLOCATION STATISTICS.
Benachmark malloc calloc realloc
400.perlbench 346,405,116 0 11,736,402
401.bzip2 174 0 0
403.gcc 23,690,559 4,723,237 44,688
429.mcf 5 3 0
445.gobmk 606,463 0 52,115
456.hmmer 1,983,014 122,564 368,696
458.sjeng 5 0 0
462.libquantum 1 121 58
464.h264ref 7,270 170,518 0
471.omnetpp 267,064,936 0 0
473.astar 4,799,959 0 0
483.xalancbmk 135,155,553 0 0

over native program execution, and the average overhead is
only 4.3%. The overhead is due to the metadata (e.g., buffer
size) our systems maintains for each buffer, and can be largely
eliminated if our system is integrated into the underlying heap
allocator. Note that guard pages themselves do not increase the
use of memory, since they are virtual pages.

Service Programs. We also evaluated our system on two
popular service programs: Nginx and MySQL. We used
Nginx 1.2, and measured the throughput overhead by sending
requests using Apache Benchmark. Different numbers of
concurrent requests from 20 to 200 were used, and the
throughput was compared with that of native execution. The
average throughput overhead is only 4.2%. We used MySQL
5.5.9 and its built-in script mysgl-stress—test.pl to
measure the throughput overhead. There was no observable
throughput overhead. The memory overhead in both cases was
negligible. Note that the memory overhead is proportional with
the number of live buffers.

Comparison with State of the Art. MemorySanitizer [20]
detects uninitialized read only at an average of 2.5x slow-
down on SPEC CPU2006. AddressSanitizer [8] detects over-
flows and use-after-free only, and the average slowdown on
CPU2006 is 73% and the memory overhead is 3.37x. They
make use of shadow memory for online detection, while our
work uses it for offline analysis only; they detect attacks on
both heaps and call stacks. Exterminator (see Section II-C)
incurs only 7.2% slowdown on CPU2006, but it generates the
heap buffer overflow defense probabilistically over multiple
runs. Unlike Exterminator, HeapTherapy [19] deterministically
generates the overflow defense in a single run, and it is the
first work that introduces calling context encoding to memory
defense generation, but it cannot handle uninitialized read and
use-after-free. Cruiser [10] uses a concurrent thread to scan the
heap integrity and achieves very high efficiency (5% slowdown
on CPU2006), but it can only detect overwrites.

Summary. The evaluation shows that HEAPTHERAPY+ is
effective but efficient. It generates defenses for a variety
of heap vulnerabilities in a deterministic way. On SPEC
CPU2006, the most optimized calling context encoding incurs
only 0.4% of slowdown, a 6 times of speed boost compared
to PCC [30]. When five patches are installed, the total speed
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Fig. 8. Normalized execution time overhead imposed to SPEC CPU2006 benchmarks (smaller is better), when only interposition is applied (1.9%), no patch
is installed (4.3%), one patch is installed (4.7%), and five patches are installed (5.2%), respectively.

Fig. 9. Normalized memory overhead imposed to SPEC CPU2006 bench-
marks when HEAPTHERAPY+ runs. The average memory overhead is 4.3%.

overhead is only 5.2%, most of which is due to interposing al-
location/deallocation and maintaining metadata; it means that
the overhead can be further reduced if our system is integrated
into the underlying heap allocator. The throughput overhead
on real-world service programs is very low or negligible.

IX. DISCUSSION

A limitation of HEAPTHERAPY+ is that it can only handle
the overflow caused by continuous writes or reads, which is
the main form of buffer overflows, though. Overflows due to
discrete reads or writes cannot be handled by HEAPTHER-
APY+. Plus, if an overflow runs over an array which is an
internal field of a structure, HEAPTHERAPY+ cannot detect it.
These limitations are shared by many existing countermeasures
against buffer overflows, such as AddressSanitizer [8] and
HeapTherapy [19]. A common challenge for heap security
tools that work via interception of allocation calls is to
make them work with custom allocators. Existing works like
MemBrush [61] may be leveraged to locate custom memory
allocations and address this challenge.

More precisely, the patches generated by HEAPTHERAPY+
are configurable runtime defenses, since they do not com-
pletely fix a bug (e.g., DoS can still be triggered via overflows).
Our goal is not to replace conventional patching. Instead,
it is to complement the conventional patching procedure by
providing immediate protection when patches are not available
or fresh patches still need more time for testing.
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It may occur that a heap vulnerability can be exploited
via multiple CCIDs. Thus, the attacker may develop different
attack inputs to exploit buffers with those CCIDs. However,
whenever the attack exploits a buffer allocated in a new calling
context, our system simply treats it as a new vulnerability
and starts another defense generation cycle. Based on our
evaluation and previous researches on context-sensitive de-
fenses [19], [33], [40], [48], such cases are rare.

When analyzing the use-after-free attack for programs that
have large memory profiles, the memory quota for the FIFO
queue of freed blocks may be drained. In this case, we can
replay attacks in multiple executions; specifically, we divide
the whole space of CCIDs into NV subspaces, and each of the
N executions defers the deallocation of buffers that have the
allocation-time CCIDs in one of the subspaces. Now, each
execution is expected to consume 1/N of the memory.

X. CONCLUSIONS

We have combined heavyweight offline attack analysis and
lightweight online defense generation to build a new heap
memory defense system HEAPTHERAPY+. It demonstrates
how shadow memory that incurs tens of times of slowdown can
be used for generating defenses that imposes a very small over-
head. It has many prominent advantages: (1) patch generation
without manual efforts, (2) code-less patching, (3) versatile
handling of heap buffer overwrite, overread, use after free,
and uninitialized read, (4) imposing a very small overhead,
and (5) no dependency on specific allocators. The evaluation
shows that is effective and efficient. The speed overhead is
only 5.2% when five patches are installed on SPEC CPU2006
benchmarks, and the overhead can be further reduced is the
system is integrated into the underlying allocator.

In addition, we have proposed targeted calling context
encoding, which achieves six times of speed boost compared
to the prior encoding technique and may interest researchers
applying or building calling context encoding techniques.
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