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ABSTRACT

Secure pairing is key to trustworthy deployment and application of
Internet of Things (IoT) devices. However, IoT devices lack conven-
tional user interfaces, such as keyboards and displays, which makes
many traditional pairing approaches inapplicable. Proximity-based
pairing approaches are very usable, but can be exploited by co-
located malicious devices. Approaches based on a user’s physical
operations on IoT devices are more secure, but typically require
inertial sensors, while many devices do not satisfy this require-
ment. A secure and usable pairing approach that can be applied to
heterogeneous IoT devices still does not exist. We develop a tech-
nique, Universal Operation Sensing, which allows an IoT device to
sense the user’s physical operations on it without requiring inertial
sensors. With this technique, a user holding a smartphone or wear-
ing a wristband can finish pairing in seconds through some very
simple operations, e.g., pressing a button or twisting a knob. More-
over, we reveal an inaccuracy issue in original fuzzy commitment
and propose faithful fuzzy commitment to resolve it. We design
a pairing protocol using faithful fuzzy commitment, and build a
prototype system named Touch-to-Pair (T2Pair, for short). The
comprehensive evaluation shows that it is secure and usable.
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1 INTRODUCTION

Internet-of-Things (IoT) devices are widely deployed, generating
great impacts on various industries and our daily lives. A study
estimates that the number of installed IoT devices will reach 75
billion by 2025 [44]. As pairing is to establish a communication
channel, a convenient and secure pairing approach is critical to
wide deployment and trustworthy application of IoT devices.

To pair a desktop or smartphone to an existing network, the
user simply inputs the network password to the device. However,
most IoT devices do not have user interfaces (UIs) for inputting
passwords, and thus cannot apply this approach.

Many IoT device vendors have the user use her personal mobile
device (e.g., a smartphone) to connect the IoT device’s hotspot and
input the home WiFi password. If the network connection is secure
(how to ensure it is a challenge [4, 12]), the IoT device can obtain the
password from the mobile device securely. This way, the problem of
pairing an IoT device is reduced to mutual authentication between
the IoT device and user’s mobile device [48]. We also leverage a
user’s mobile device for pairing IoT devices.

The literature has proposed many IoT pairing approaches, which
can be divided into at least two categories. The first category estab-
lishes pairing on proximity between devices to be paired [4, 12, 14,
32, 42, 48, 49]. It can be further divided into two sub-categories. (a)
As all IoT devices have certain wireless communication capabilities,
some approaches (such as Move2Auth [48]) prove proximity by
exploiting characteristics of wireless signals [12, 48, 49]. (b) Other
approaches (such as Perceptio [14]) make use of the ambient con-
text, like audio and light, to prove proximity [4, 32, 42]. Approaches
in this category usually feature usability; however, they can be
exploited by co-located malicious devices.

Approaches in the second category require the user to physi-
cally contact or operate the IoT device [15, 30, 45]. For example,
ShaVe/ShaCK [30] has a user hold her smartphone and the IoT de-
vice together in one hand and shake them, and then the knowledge
of the shared movement sequence is used for pairing. They are
generally more secure, as physical operations are involved in the
pairing process. But they require IoT devices to have inertial (or
touch) sensors that sense the user’s operations, while many IoT
devices do not have such sensors.

We consider IoT devices that (1) do not have sophisticated UIs
like keyboards, (2) may be located close to untrusted or malicious
devices (for example, a hospital may contain a mix of devices that
belong to the doctors, patients, or attackers), (3) do not necessarily
have inertial sensors, and (4) may be mobile or mounted, installed
indoors or outdoors. A secure and usable pairing approach that is
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applicable to such heterogeneous IoT devices still does not exist. For
example, Perceptio [14] can only be applied to IoT devices installed
indoors without co-located malicious devices. We propose a system
named Touch-to-Pair (T2Pair, for short) that is not only secure
but applicable to heterogeneous IoT devices. Moreover, it is very
easy to use—a user wearing a wristband (or holding a smartphone)
only needs to touch, in the form of some very simple operations,
the IoT device for a few seconds to finish pairing.

T2Pair is built on a technique, Universal Operation Sensing (UOS),
which allows an IoT device to sense user operations on an IoT
device without requiring any inertial sensors. When a user wearing
a wristband or holding a smartphone touches an IoT device, such as
pressing its button a few times, twisting its knob back and forth, or
swiping its touchscreen1 in a zig-zag way, salient points arise when
the button is pressed/released or the twisting/swiping changes its
direction. We share an insight with P2Auth [23] and Perceptio [14]
that every IoT device has a clock. To make the technique widely
applicable, we use timestamps to describe salient points. On the
user’s wristband (or smartphone) side, the same set of salient points
can be identified by analyzing the motion data captured by the built-
in Inertial Measurement Unit (IMU). Subsequently, the wristband
and the IoT device can make use of the knowledge of the salient
points to authenticate each other.

T2Pair can be widely applied to most IoT devices on the market.
As shown in Figure 1, our survey of 270 most popular IoT devices on
Amazon (ranked by the number of reviews) indicates that 92.6% of
them have a normal button, knob, touchscreen, or recessed button.
For example, an Amazon smart plug, which does not need much
interaction, has a button for pairing and turning it on/off.

We assume the adversary has full control over all communica-
tion channels. Thus, given that the wristband and the IoT device
do not have prior security association, how to perform secure au-
thentication in the presence of attacks, such as man-in-the-middle
(MITM) attacks, is a challenge. This is a critical difference between
IoT pairing and authentication [23], as the latter usually assumes
the IoT device is already securely associated with the user’s token
or device used for authentication. Another challenge is that the
user’s wristband and the IoT device may have small differences
with regard to the observations of salient points. To overcome the
two challenges, we first tried fuzzy commitment [20], which incor-
porates cryptography and error-correcting code, such that the two
1Touchscreens allow users to input passwords directly; however, the usability of
inputting a WiFi password of eight characters or longer on a small touchscreen is poor.
We thus extend T2Pair to touchscreens.

sides (wristband and IoT device) can securely authenticate each
other without leaking the knowledge to the MITM adversary and,
meanwhile, tolerate small differences aforementioned.

However, this attempt failed. Our experiment shows that the
original fuzzy commitment leads to a high pairing-failure rate, and
our investigation reveals that sometimes small differences between
observations lead to very different encodings, while large differ-
ences result in similar encodings. We thus propose faithful fuzzy
commitment, which makes sure distances between encodings faith-
fully reflect differences between observations.

Furthermore, we uncover a security weakness under trained
mimicry attacks (i.e., an attacker who is familiar with the victim user
mimics her pairing operations) and show how to enhance T2Pair
without harming usability. A prominent advantage of T2Pair is that
it does not need clock synchronization, as it uses intervals between
salient points for encoding, which makes the pairing resilient to
attacks that interfere with clock synchronization.

We implement T2Pair and evaluate it on prototypical IoT de-
vices with buttons, knobs or touchscreens. The evaluation results
show that T2Pair has very low false rejection/acceptance rates. The
pairing takes only 7 seconds. A user study is performed, confirming
high usability of T2Pair. We make the following contributions.
● We develop Universal Operation Sensing (UOS), which allows
IoT devices to sense user operations and uses timestamps to
describe them, without requiring inertial sensors. We reveal the
weakness of pairing based on UOS under trained mimicry attacks
and enhance it to attain both usability and security.
● We propose faithful fuzzy commitment, such that small distances
between encodings faithfully reflect small differences between
values being encoded, and vice versa. A pairing protocol based
on faithful fuzzy commitment and password-authenticated key
exchange [5] is proposed, with strong resilience to attacks.
● Built on the two techniques, we propose and implement T2Pair.
A user only needs to touch the IoT device, in the form of pressing
a button, twisting a knob, or swiping a touchscreen, to finish
pairing. The paring method can be applied to heterogeneous IoT
devices without requiring inertial sensors, and largely eliminates
the threat of co-located malicious devices. The comprehensive
evaluation shows that T2Pair is secure and usable.
The rest of the paper is organized as follows. Section 2 describes

the system overview and threat model. Section 3 presents UOS,
Section 4 the protocol, and Section 5 implementation details. Sec-
tion 6 describes the dataset collection and Section 7 the evaluation.
Related work is discussed in Section 8, and limitations in Section 9.
The paper is concluded in Section 10.

2 SYSTEM OVERVIEW AND THREAT MODEL

Given an IoT device, our goal is that a user can utilize her personal
mobile device, called a helper, such as a smartphone, fitness tracker,
smartwatch, or smart ring [34], to securely pair an IoT device by
quickly performing simple operations on the device.

We take the device with a single button, as an example, to il-
lustrate the overview of our pairing mechanism. Figure 2 shows a
block diagram of T2Pair, where a user wearing a helper presses
the button a few times to conduct the pairing. In the process, the
device makes use of its clock to describe the button-pressing events
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Figure 2: Architecture of T2Pair (a wristband as the helper and an IoT device with a button as an example).

and derives a piece of evidence of the pairing operations, while
the helper collects readings from its accelerometer/gyroscope, and
independently generates another piece of evidence. We further de-
sign a protocol that allows the two parties to compare the evidence
without leaking it to the MITM attacker. If the difference is small
enough, they will be able to agree on a session key.
ThreatModel. The attacker𝒜 has one or multiple of the following
goals. (G1) The victim 𝒱 ’s helper 𝐻𝑣 pairs 𝒜’s malicious device
𝐷𝑎 , so 𝐻𝑣 is fooled to exchange data (such as the WiFi password,
photos, sensor data) with 𝐷𝑎 . (G2) The IoT device 𝐷𝑣 pairs a ma-
licious helper 𝐻𝑎 of 𝒜, so 𝐷𝑣 is fooled to exchange data with 𝐻𝑎 .
(G3) 𝒜 cracks the symmetric key and uses it to eavesdrop and/or
manipulate the communication between 𝐻𝑣 and 𝐷𝑣 .

We assume𝒜 has full knowledge of our pairing protocol. Like [14,
32], our work follows a standard Dolev-Yao adversary model [11];
i.e., the adversary has full control over all communication channels.
Based on this, 𝒜 may launch MITM attacks, e.g., by intercepting
𝐷𝑣 ’s (𝐻𝑣 ’s, resp.) message sent to 𝐻𝑣 (𝐷𝑣 , resp.) and sending faked
messages instead. We further consider the attacks below.

Mimicry Attacks. If 𝒜 has a visual observation of 𝒱 , 𝒜 may
launch a mimicry attack by mimicking 𝒱 ’s pairing operations, in
order to achieve G1 and/or G2. We examine the following threat
scenarios where 𝒜 has increasing capabilities. MA-obstructed: 𝒜
can see 𝒱 , but cannot directly see 𝒱 ’s hand motions due to certain
obstructions. MA-clear: 𝒜 can clearly see 𝒱 ’s hand motions by
selecting an optimal viewing angle. MA-trained: 𝒜 is familiar
with 𝒱 and trained by learning the pairing operations of 𝒱 before
launching a mimicry attack described in MA-clear.

Brute-Force Attacks. BF-online: During the pairing process,
𝒜 tries every possible piece of evidence until it hits a correct one,
so 𝐻𝑣 and/or 𝐷𝑣 are fooled to pair the attacker. BF-offline:𝒜may
collect all the pairing traffic and perform offline analysis in order
to crack the established key after pairing.

Attacks beyond Scope. 𝒜 may be equipped with a camera and
computer-vision techniques to analyze 𝒱 ’s hand movements. Like
other pairing approaches that require physical operations, such as
ShaVe/ShaCK [30], T2Pair is also vulnerable to such attacks. At a
user’s home or office, however, the attack is not easy to launch, as
it requires an attacker-controlled camera that points at the user.
𝒜 may launch Denial-of-Service (DoS) attacks to manipulate

the communication channel and disrupt the pairing. But if failed
pairings occur repetitively, the helper can alert the user, who can
take actions to investigate or report the attacks.

3 PAIRING OPERATIONS AND EVIDENCE

We introduce pairing operations in Section 3.1, study operation sens-
ing in Section 3.2, and present evidence extraction in Section 3.3.

3.1 Pairing Operations

To devise usable and effective pairing operations, the UI properties
of IoT devices should be taken into consideration. According to our
survey, the most common UIs of resource-constrained IoT devices
include buttons (e.g., AWS IoT Button [2]), knobs (e.g., Nest Ther-
mostats [13]), and touchscreens (usually small, e.g., Honeywell T9
Smart Thermostats [16]). Thus, our design of Universal Operation
Sensing (UOS) considers the three types of UIs: buttons, knobs, and
touchscreens, and includes the following pairing operations.
● Pressing the button a few times with one or more random pauses
added. A “pause” here means that after the button is pressed
down, the user holds, intentionally, for a random short time
before releasing it. Note that it does not refer to the natural pause
when a user presses down a button and naturally holds shortly
before releasing it. Our experiments reveal that UOS without
pauses is weak under trained mimicry attacks (Section 7.2), while
UOS with pauses is much more resilient (Section 7.2).
● Twisting the knob back and forth with one or more random pauses
added. When the knob is twisted, the micro-controller on the IoT
device can detect the direction and amount of current twisting.
To add a pause, the user intentionally holds for a random short
time right prior to changing the twisting direction.
● Zig-zag swiping on the touchscreen with one or more random pauses
added. Rather than asking the user to draw a specific shape or
pattern on a small screen, which harms usability, the user simply
swipes the screen using a finger from left to right and back again
for a few times. Similarly, for better security the user can hold
for a short time right before changing the swiping direction.
All the operations are simple and easy to perform. More impor-

tantly, each involves “crispy” speed/direction changes, which can
be sensed by both IoT device and the helper (Section 3.2). Similar
operations, without pauses, were used in our prior work P2Auth for
authentication [23], but it was unclear how they could be used for
pairing and whether they were resilient to trained mimicry attacks.

3.2 Study of Sensing Pairing Operations

It is reliable (and trivial) to use the controller or sensor of an IoT
device to sense the button-down/button-up, knob twisting or screen
swiping. We collect the data readings from the IoT device, along
with the corresponding time, and regard them as ground truth.

On the side of the helper, it uses the embedded IMU to collect
motion data during pairing operations. It is thus critical to explore
the following questions. (1) Does the IMU data show certain cor-
relations with the ground truth? (2) Are the correlations reliable
across different devices, users and pairing instances?

To this end, we ask users to perform each of the three types
of pairing operations (no pauses for simplicity of discussion). The
user can decide the posture of her hand and wrist, and use different
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Figure 3: Gyroscope data capturedwhen three (3) users twist knobs. The black lines show the ground truth of twisting direction.

helpers (a smartwatch or smartphone). For example, the photo at
the upper left of Figure 3 shows a user wearing a smartwatch, while
that at the lower left shows a user holding a smartphone.

We use knob twisting as an example, as shown in Figure 3. We
observe a strong correlation between the twisting operations and
the gyroscope data, which measures the angular velocity of its
rotation: regardless of the user and her posture of hand and wrist,
the gyroscope data changes from positive (resp. negative) values to
negative (resp. positive) values, as the rotation direction changes
according to the ground truth. (On the other hand, the acceleration
does not show such a strong correlation, as twisting affects the
angular velocity significantly, rather than the linear speed.)

This strong correlation can be observed in at least one axis of
the gyroscope data. E.g., when the knob is rotated roughly around
the 𝑥-axis of the smartwatch (the upper row of Figure 3), the gyro-
scope signal along the 𝑥-axis (blue line) changes significantly as the
rotation direction (black line) changes. In the lower row of Figure 3,
there exist significant signal changes in both the 𝑥-axis (blue line)
and 𝑦-axis (red line) of the gyroscope data. We thus conclude that
the gyroscope and knob twisting have a strong correlation in at
least one axis of the gyroscope data, which features significant value
changes. It is straightforward to detect the axis of data that shows
the most significant value changes, and we call it the dominant axis.

Strong correlations are observed for the other two types of pair-
ing operations (see Figures 11 and 12 in Appendix B). For each
button pressing, the acceleration data along at least one axis has a
sharp peak or valley. The gyroscope data does not have significant
changes—when the user’s finger presses a button, the acceleration
reaches a peak quickly because the finger’s moving speed suddenly
decreases to zero, while the gyroscope data is not affected much.
Like twisting knobs, in the case of zig-zag swiping, the gyroscope
data changes significantly as the swiping direction changes.

3.3 Extracting Evidence

The strong correlations provide basis for comparison, but it is not
easy to directly compare the two sequences of heterogeneous data:

the IoT device receives a sequence of input events, while the helper’s
IMU generates a sequence of motion data. To address it, we propose
to extract salient points from the data, and use the occurrence time
of each point to represent it, making it easier to compare. Below,
we use 𝑑1 to denote the IoT device, and 𝑑2 the helper.
3.3.1 Salient Points on the IoT Device Side.
Pressing buttons. Pressing a button once generates two events:
PressedDown and ReleasedUp, as shown in Figure 4(a) (the pink
area shows the duration between two consecutive PressedDown
and ReleasedUp events). We adopt the PressedDown events dur-
ing pairing as the salient points, as they can be sensed on both
sides (see Section 3.2). We thus obtain the timestamp sequence
𝑆𝑑1 = {𝑡1, 𝑡2, . . . , 𝑡𝑛}, where 𝑡𝑘 is the occurrence time of the 𝑘th
PressedDown. It is worth noting that a random pause just intro-
duces a relatively longer time span between two consecutive salient
points. We thus do not explicitly identify and represent pauses.
Twisting knobs. Each rotation-direction change is handled as
a salient point. As shown in Figure 4(b), the 𝑘th salient point is
represented using 𝑡𝑘 ≈ 1

2(𝑡
(𝑒)

𝑘
+ 𝑡(𝑠)

𝑘+1), where 𝑡
(𝑒)

𝑘
denotes the

end time of the 𝑘th rotation and 𝑡(𝑠)
𝑘+1 the start time of the (𝑘 +

1)th rotation. The timestamps 𝑡(𝑒)
𝑘

and 𝑡(𝑠)
𝑘+1 should be close for

identifying a salient point. We thus obtain 𝑆𝑑1 = {𝑡1, 𝑡2, . . . , 𝑡𝑛−1},
where 𝑡𝑘 is the occurrence time of the 𝑘th salient point.
Swiping touchscreens. Each swiping-direction change is handled
as a salient point, as shown in Figure 4(c). We extract a timestamp
sequence 𝑆𝑑1 = {𝑡1, 𝑡2, . . . , 𝑡𝑛−1}, where 𝑡𝑘 is the 𝑘th salient point.
3.3.2 Salient Points on the Helper Side.
Pressing buttons. Figure 4(a) shows an example of pairing via
pressing a button. In this case the 𝑧-axis of acceleration is the
dominant axis (see Section 3.2); the signal along the other two
axes are in dashed grey lines. At each salient point of the ground
truth, i.e., PressedDown event, a sharp peak is observed.We retrieve
the occurrence time of each sharp peak, and derive the sequence
𝑆𝑑2 = {𝑡1, 𝑡2, . . . , 𝑡𝑚}, where 𝑡𝑘 is the time of the 𝑘th sharp peak.
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Figure 4: Salient points for the three types of pairing operations.

Twisting knobs. According to our study of motion data (see Sec-
tion 3.2), we use the gyroscope data for detecting salient points,
which correspond to rotation-direction changes. In the example
shown in Figure 4(b), the 𝑥-axis is the dominant axis. As the rotation
direction of the IoT device changes, the signal sign of the gyroscope
changes as well. Therefore, we detect salient points by searching for
the points of signal sign switches during large-amplitude changes.
We extract a sequence of timestamps of all the salient points. The
timestamp sequence is denoted as: 𝑆𝑑2 = {𝑡1, 𝑡2, . . . , 𝑡𝑚}, where 𝑡𝑘
refers to the occurrence time of the 𝑘th salient point.

During a pause, the gyroscope readings are near zero. But there
may exist small fluctuations, especially at the start (denoted by the
green circle in Figure 4(b)). To avoid detection of false salient points,
such fluctuations are filtered via simple thresholding.
Swiping touchscreens. Each direction change of the swiping pro-
duces a salient point in the gyroscope data trace. As shown in Figure
4(c), each salient point corresponds to a sharp sign change due to
a swiping-direction change. We obtain a sequence of timestamps:
𝑆𝑑2 = {𝑡1, 𝑡2, . . . , 𝑡𝑚}, where 𝑡𝑘 is the time of the 𝑘th salient point.
Big silence. It is critical to identify the first salient point. After
the pairing is initiated (e.g., by long pressing a button), as the
user’s hand approaches the IoT device’s button/knob/screen, there
may exist some noisy motion data that looks like salient points. To
address this, we simply ask the user to touch the button/knob/screen
and hold shortly, around 2–3 seconds, before performing the pairing
operations. This way, the “big silence” in the motion data works as
an indication that pairing operations follow and the detection of
salient points from the motion data can start.

3.3.3 No Clock Synchronization. To eliminate the need of clock
synchronization, we convert each timestamp sequence into a se-
ries of time intervals using the equations 𝑖𝑘 = 𝑡𝑘+1 − 𝑡𝑘 and 𝑖𝑘 =
𝑡𝑘+1 − 𝑡𝑘 for 𝑆𝑑1 and 𝑆𝑑2 , respectively. We then concatenate the
time intervals and call them evidence: 𝐸𝑑1 = {𝑖1⋃︀⋃︀𝑖2⋃︀⋃︀⋯⋃︀⋃︀𝑖𝑞−1} and
𝐸𝑑2 = {𝑖1⋃︀⋃︀𝑖2⋃︀⋃︀⋯⋃︀⋃︀𝑖𝑝−1}, where 𝐸𝑑1 represents the evidence collected
by the IoT device, and 𝐸𝑑2 by the helper.2

2Note that clock drift during pairing does not cause an issue here, as the pairing
operations take only around three seconds (Section 7.5), leading to 3ms of drift in
the worst case (see Section 3.2 of [26]); such small differences between evidence are
tolerated by our protocol based on fuzzy commitment (Section 4.1).

4 PROTOCOL FOR KEY AGREEMENT

Once two pieces of evidence are extracted, the two sides use the
evidence to mutually authenticate each other and establish a key.

4.1 Challenges and Solution

How to perform secure mutual evidence verification, when there
are powerful attacks such as man-in-the-middle (MITM) attacks, is
a challenge. Another challenge is that the wristband and the IoT
device may have small differences, e.g., due to sensor readings and
clock drift, with regard to the observations of salient points.
Failed attempt. To address the two challenges, we first adopt
a fuzzy commitment scheme (FCS) building on error correcting
codes [20]. Fuzzy commitment schemes have been utilized for prox-
imity based pairing [14, 32, 42]. It allows mutual evidence veri-
fication without disclosing the evidence to MITM attackers and
handles small differences between two pieces of evidence. The
sender converts its evidence to an encrypted message, which can be
successfully opened only if the receiver owns the evidence that is
similar to the sender’s in the metric of Hamming distance [20]. We
call the original fuzzy commitment as vanilla fuzzy commitment.

To conduct the vanilla fuzzy commitment, the evidence needs
to be firstly encoded into a bit-representation. Previous studies
convert a value directly to its binary representation [14]. But the
encoding method may incorrectly consider two dissimilar (resp.
similar) evidence sequences as similar (resp. dissimilar).

For example, given the interval values {121} and {57}, which are
encoded as “0111 1001” and “0011 1001”, respectively, based on the
definition of Hamming distance, which is the number of different
digits in the two bit strings, we obtainHam(121, 57) = 1. Since their
Hamming distance is very small, the two intervals are considered
similar, while in fact their difference is large. As another example,
the interval values, {128} and {127}, can be represented as “1000
0000” and “0111 1111”, respectively. We have Ham(128, 127) = 8.
Thus, the vanilla fuzzy commitment incorrectly considers the two
similar interval values very different.

In short, while the vanilla fuzzy commitment works fine in cer-
tain applications, e.g., when the values fall in large ranges, it does
not work well in our case as the difference of intervals is not huge.
Solution. To address the problem, we propose faithful fuzzy com-
mitment, which encodes each time interval by first dividing the
interval value by a base value to tolerate small differences and
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Table 1: The pairing protocol.

Device 𝑑1 Device 𝑑2
Phase 1: Initialization

Initiates the pairing

Phase 2: Extracting Evidence

𝐸𝑑1 = 𝑇𝑖𝑚𝑒_𝐼𝑛𝑡_𝑆𝑒𝑞(𝑑1) 𝐸𝑑2 = 𝑇𝑖𝑚𝑒_𝐼𝑛𝑡_𝑆𝑒𝑞(𝑑2)
if self-checking fails, aborts if self-checking fails, aborts and reminds the user

Phase 3: Fuzzy Commitment

1 picks a random value 𝑃 ∈ F𝑚2𝑘
2 _ ∈ F𝑛2𝑘

encode←ÐÐÐ RS(2𝑘 ,𝑚,𝑛, 𝑃)
3 commits: 𝛿 = 𝑒(𝐸𝑑1)⊕ _

𝛿ÐÐÐÐ→ 4 decommits: _′ = 𝑒(𝐸𝑑2)⊕ 𝛿
5 𝑃
′ decode←ÐÐÐ RS(2𝑘 ,𝑚,𝑛, _′)

Phase 4: PAKE

6 picks 𝑎; 𝐴 = 𝑔𝑎 mod 𝑝;𝑤 = h(𝑃) E(𝑤,𝐴)ÐÐÐÐÐÐÐ→ 7 picks 𝑏; 𝐵 = 𝑔𝑏 mod 𝑝;𝑤 ′ = h(𝑃 ′)
9 𝐾 = 𝐵𝑎 mod 𝑝

E(𝑤′, 𝐵⋃︀⋃︀𝐶1)←ÐÐÐÐÐÐ 8 𝐾
′ = 𝐴𝑏 mod 𝑝; picks a challenge 𝐶1

10 picks a challenge 𝐶2
E(𝐾,𝐶1⋃︀⋃︀𝐶2)ÐÐÐÐÐÐ→ 11 if 𝐶1 is not received, aborts

12 if 𝐶2 is not received, aborts
E(𝐾 ′,𝐶2)←ÐÐÐÐÐÐ

reduce the encoding length and then representing the result as a
sequence of consecutive “1” and “0” bits. The distance then can be
computed as the Hamming distance between their encodings.

Given the base value 𝐵 and an interval value 𝑖 , we derive 𝑛 =
⟨︀𝑖⇑𝐵⧹︀. We make sure all intervals have the same length 𝐿 of encod-
ings. Then, the interval is represented as 𝑛 consecutive “1” bits, with
another 𝐿 −𝑛 “0” bits appended to the end. So the interval with the
value 𝑖 is encoded as:

𝑒(𝑖) =
𝑛(︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂[︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂(︂

1, 1,⋯, 1, 0, 0,⋯, 0
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

𝐿

(1)

A large base value 𝐵 leads to more efficient key agreement but
less precise evidence comparison, and vice versa. We discuss how
to select the base value 𝐵 in Section 7.4. Assume 𝐵 = 4 and consider
the two examples above. {121} can be encoded as ⟨︀121⇑4⧹︀ = 30
consecutive “1” bits follwed by 𝐿 − 30 “0” bits. {57} can be en-
coded as 14 consecutive “1” bits followed by 𝐿 − 14 “0” bits. Thus,
we have Ham(𝑒(121), 𝑒(57)) = 16, which is much larger than
Ham(𝑒(128), 𝑒(127)) = 1. Therefore, our faithful fuzzy commit-
ment overcomes the limitation of the vanilla fuzzy commitment
and makes correct decisions.

The encoding can only represent a value between 0 and 𝐿 ∗ 𝐵 +
(𝐵 − 1). It works well in our case as intervals do not fall in a huge
range. We do not claim it as a general encoding solution.

4.2 Protocol Details

Table 1 shows our protocol, which consists of four phases. (1) Ini-
tialization. Almost all commercial off-the-shelf devices have some
built-in method to initiate the pairing process (e.g., long pressing a
button). (2) Extracting Evidence. As the user wearing/holding the
helper device preforms pairing operations on the IoT device, each
side extracts evidence independently. Here, self-checking is en-
forced: if there are no pauses detected, the pairing aborts and the
helper reminds the user of adding one or more pauses. As illus-
trated in Section 7.2, pauses are critical to defeat trained mimicry

attacks. (3) Fuzzy Commitment. The two devices use the evidence to
communicate a “password”. (4) Password-Authenticated Key Agree-
ment (PAKE). The devices make use of the “password” to agree on
a session key. Below we interpret the details of Phases (3) and (4).
Fuzzy Commitment. This phase is accomplished using faithful
fuzzy commitment and the Reed-Solomon (RS) error correcting
code [38]. Given a set of possible words P each with𝑚 bits, a set
of possible codewords Q each with 𝑛 bits, and 𝑛 >𝑚, RS codes are
initialized as P = F𝑚2𝑘 , and Q = F𝑛2𝑘 , where 𝑘 is a natural number
and 2𝑘 denotes the number of words (codewords) in P (Q).

The device 𝑑1 first randomly selects a “password” 𝑃 ∈ P using
a key generation algorithm ( 1 ). Then, 𝑃 is uniquely mapped to a
codeword _ ∈ Q using the RS encoding function ( 2 ). This step adds
redundancy to the original words with 𝑛 >𝑚, based on polynomials
over Galois fields [38], to support error correcting. After that, the
commitment process produces an encryption of the codeword _ by
hiding it using the evidence 𝐸𝑑1 . It performs an exclusive-OR (⊕)
between 𝑒(𝐸𝑑1) and _, and obtains the commitment 𝛿 = 𝑒(𝐸𝑑1)⊕
_ [20, 32], where 𝑒() is the encoding described in Section 4.1 ( 3 ).
𝑑2 then conducts decommitment. It uses the received 𝛿 and 𝑒(𝐸𝑑2)
to obtain a codeword _′ = 𝑒(𝐸𝑑2)⊕ 𝛿 ( 4 ). Finally, _′ is decoded to
𝑃
′ using the RS decoding function ( 5 ). Readers are referred to [20]

for more detailed interpretation of fuzzy commitment.
The effects of this phase are as follows. (1) If 𝐸𝑑1 and 𝐸𝑑2 are

close enough, 𝑑2 is able to derive a value 𝑃 ′ = 𝑃 ; otherwise, 𝑃 ′ ≠ 𝑃 .
(2) However, at this moment, 𝑑2, no matter it is a benign device
(because of false rejections) or an attacker (who has derived 𝑃 ′

using a guess of the evidence), is not sure whether 𝑃 ′ = 𝑃 .
The reason we call 𝑃 , which is actually a random key value, a

“password” is to take offline brute-force attacks (BF-offline) into
consideration. If 𝑃 is directly used as the session key, an offline
attacker who has collected the traffic can try every possible evidence
and repeat 4 and 5 until he finds a key that can decrypt the traffic;
thus, the entropy of evidence (see Section 7.3) disqualifies 𝑃 to work
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1 2 3 4 5 6

Figure 5: Six devices are used in our experiments, including

two keypads (a plastic keypad labeled as 1, and a rubber one

as 2; in either case, we only use one button for pairing); two

knobs (a large knob labeled as 3, and a small one as 4); two

touchscreens (a 5.2" GoogleNexus 5X labeled as 5, and a 2.45"

Unihertz Atom labeled as 6).

as a secure shared key. We thus use PAKE, which securely generates
a high-entropy shared key from a low-entropy password [8].

PAKE. We use Diffie-Hellman Encrypted Key Exchange (DH-
EKE) [5], which has led to the PAKE family of methods in IEEE
P1363.2 [18], but many other PAKE methods should also work.
DH-EKE is a DH-based key exchange method that makes use of a
password to defeat MITM attacks, as both 𝐴 and 𝐵 are transmitted
in encrypted messages ( 6 and 8 ). Note the base𝑔 and the modulus
𝑝 are public knowledge, h() is a cryptographic hash function, and
E() is a symmetric encryption function. If 𝑃 ′ ≠ 𝑃 , 𝑑2 will receive a
value different from the challenge 𝐶1 it has picked ( 11 ); otherwise,
after 11 and 12 , 𝑑1 and 𝑑2 establish a key 𝐾 = 𝐾 ′.
Parameter Consideration. The security of _ is primarily gov-
erned by the size (i. e., 2𝑘 ) of the set of codewords [20]. To provide
strong security, 𝑘 should be larger than 80, which is comparable to
RSA-1024. By applying RS, a word of length𝑚 is uniquely mapped
to a codeword of length 𝑛. The maximum number of bits between
two codewords that can be corrected is 𝑇ℎ𝑟 = ⟨︀𝑛−𝑚2 ⧹︀. Thus, if and
only if the Hamming distance between two pieces of evidence sat-
isfies Ham(𝑒(𝐸𝑑1), 𝑒(𝐸𝑑2)) ≤ 𝑇ℎ𝑟 , the symmetric key 𝑃 ′ = 𝑃 can
be established. The value selection for 𝑇ℎ𝑟 is studied in Section 7.1.
Resilience to Brute-Force Attacks. The forward secrecy of DH
ensures that even if 𝑃 is cracked offline (e.g., recording a video
of the user to assist offline analysis of 𝑃 , or enumerating every
possible evidence to reveal 𝑃 ), it cannot be used to reconstruct the
session key. Thus, offline brute-force (BF-offline) attacks will fail.
BF-online will not work either. As PAKE attains zero-knowledge
password proof [18], an active (man-in-the-middle) attacker can
perform exactly one guess (unless he gets it right, he learns no
information), and a passive eavesdropper learns no information
about the password or the generated key.

5 PROTOTYPE IMPLEMENTATION

Helper. A user can either wear a wristband or hold a smartphone
to perform pairing. We implement the prototypes on two helpers:
(1) an LGW200 smartwatch, and (2) a Google Nexus 5X smartphone.
We develop an application for the smartwatch running Android
Wear 2.0, and an application for the smartphone running Android
7 to collect the motion data. Both the smartwatch and smartphone
are equipped with a Bosch BMI160 inertial measurement unit con-
taining a triple-axis accelerometer and a triple-axis gyroscope.
IoT device.Avariety of IoT devices are used to build the prototypes,
as shown in Fig. 5. (1) Buttons made of two different materials are

used: a plastic keypad labeled as 1, and a rubber one labeled as
2. An Arduino board MKR1000 is adopted to interface with the
rubber keypad, and the communication is via the Wi-Fi module of
MKR1000. The plastic one has a Bluetooth module to communicate
with the helper. (2) Knobs with two different sizes are used: a large
knob labeled as 3, and a small one labeled as 4. The large knob is
a volume controller for desktop; we write an interface function to
read its data. For the small one, we use an Arduino board MKR1000
to build its interface. (3) Touchscreens with two different sizes are
used: Nexus 5X labeled as 5 has a screen size of 5.2", and Unihertz
Atom labeled as 6 has a screen size of 2.45". We implement an
application to collect the touch trajectory on the screen and record
the coordinates of each touch point in the 𝑥𝑦-plane of the screen.

6 DATA COLLECTION

We build two datasets: (1) Dataset I is used to measure the accuracy
of our system, and (2) Dataset II is used to evaluate the resistance
of our system to mimicry attacks.

We recruit 20 participants: 14 males and 6 females with ages
ranging from 18 to 36. We use three devices, including the large
knob, the plastic keypad, and the Nexus 5X smartphone, to collect
data (the other three devices are used to evaluate the stability of
the system, presented in Section 7.4).

6.1 Dataset I for Evaluating Accuracy

To build Dataset I, we ask each participant to wear a smartwatch
and perform the pairing operations on each of the three devices
for 30 times. In addition, to measure the impact of pauses, each
participant is asked to perform two types of pairing each time: one
without pauses, and another with random pauses (the user can
choose to add one or two pauses during the pairing operations).
Positive pairs.When a participant performs the pairing operations
on a device, we collect one positive data pair from the smartwatch
and device. Thus, for the pairing operations without pauses, our
dataset contains 1,800 (= 20 × 30 × 3) positive pairs, each with a
label 𝑠 = 1; for the pairing operations with random pauses, we also
collect 1,800 (= 20 × 30 × 3) positive pairs, each with a label 𝑠 = 1.
Negative pairs. Assuming two users, `1 and `2, perform the same
pairing operations on two devices, the evidence 𝐸𝑑1 from `1’s IoT
device and the evidence 𝐸ℎ2 from `2’s helper constitute a negative
pair; similarly, the evidence 𝐸ℎ1 from `1’s helper and the evidence
𝐸𝑑2 from `2’s device constitute another negative pair.

By randomly selecting two users performing the same pairing
operations, we generate 1,800 negative pairs (the same amount as
the positive pairs) for the pairing operations without pauses, and
1,800 negative pairs for the pairing operations with pauses, each
with a label 𝑠 = −1.

6.2 Dataset II for Evaluating Resilience to

Mimicry Attacks

To build Dataset II, we have 10 participants act as victims and
the other 10 as attackers. We consider the three attack settings of
mimicry attacks as discussed in Threat Model in Section 2.

For MA-trained, we first ask each victim to perform pairing
on each type of device for five times, and record a video of each
pairing. Each attacker is trained by watching the corresponding
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video as many times as needed to train herself. The attacker only
needs to learn one victim’s actions and launches attacks against
that victim. During the training, we provide the attackers with
immediate feedback on the differences between their evidence and
the victims’, so that they can adapt their operations to mimic better.

For each attack setting, each pair of attacker and victim performs
the pairing operations with/without pauses on each device for 15
times. Given 4 pieces of evidence: 𝐸𝑑𝑉 from 𝒱 ’s device, 𝐸ℎ𝑉 from
𝒱 ’s helper, 𝐸𝑑𝐴 from𝒜’s device, and 𝐸ℎ𝐴 from𝒜’s helper, two kinds
of evidence pairs are constructed based on the attackers’ goal.

(G1) The first pair consists of 𝐸ℎ𝑉 and 𝐸𝑑𝐴 , implying that 𝒜
attempts to have 𝒱 ’s helper accept a pairing with 𝒜’s device.

(G2) The second pair consists of 𝐸𝑑𝑉 and 𝐸ℎ𝐴 , implying that 𝒜
attempts to fool 𝒱 ’s device into pairing with 𝒜’s helper.

For each attack setting, we collect 900 evidence pairs for the
pairing operations without pauses, containing 450 (= 10 × 15 × 3)
G1 pairs and 450 G2 pairs. We collect the same number of pairs for
the pairing operations with pauses.

7 EVALUATION

We conduct four in-lab studies to evaluate T2Pair in terms of pair-
ing accuracy, security, stability, and efficiency. The first study (Sec-
tion 7.1) examines its pairing accuracy. The second (Section 7.2)
evaluates the resilience of our system to mimicry attacks. The third
(Section 7.3) evaluates the randomness and entropy of evidence.
The fourth (Section 7.4) tests the stability of T2Pair under different
parameters and experimental settings. The time efficiency is evalu-
ated in Section 7.5. The user study that evaluates the usability of
our pairing operations is presented in Appendix A.

7.1 Pairing Accuracy

We use False Rejection Rate (FRR) and False Acceptance Rate (FAR) to
measure the pairing accuracy. 1) FRR is the rate that our system fails
to pair the legitimate user’s IoT device with the helper. A low FRR
is important for usability. 2) FAR is the rate that our system pairs
the legitimate user’s IoT device (resp. helper) with the attacker’s
helper (resp. IoT device). So a low FAR is critical for security.

Given a pairing operation, T2Pair accepts the pairing if a shared
key can be successfully derived from a pair of evidence that has
a Hamming distance smaller than the threshold (see Section 4.1).
The threshold (𝑇ℎ𝑟 ) indicates the allowed evidence difference for
T2Pair to accept a pairing. A false rejection occurs if T2Pair obtains
Ham(𝐸𝑑1 , 𝐸𝑑2) > 𝑇ℎ𝑟 for a legal pairing of 𝑑1 and 𝑑2, and a false
acceptance if Ham(𝐸𝑑1 , 𝐸𝑑3) < 𝑇ℎ𝑟 for an illegal pairing of 𝑑1 and
𝑑3. The evidence length is defined as the number of time intervals it
contains. For pairings with pauses, we set the evidence length to 7
for knobs, and 6 for both touchscreens and buttons (see Evidence
Length in Section 7.4). For pairings without pauses, we set the
evidence length to 8 for all devices.

We use Dataset I to evaluate the accuracy of T2Pair, and compare
the performance between the pairing operations with and without
pauses. Figure 6 and Figure 7 show the performance in terms of FAR
and FRR by varying the threshold of Hamming distance. We choose
the base value as 10ms (Base Value is studied in Section 7.4).

As expected, the larger the threshold, the lower the FRR (better
usability), but the higher the FAR (worse security). Figure 6 presents

the results for pairingswithout pauses. By choosing the threshold
that yields an FRR 0.10 (we consider an error below 0.10 is reason-
ably good for usability), we can achieve an FAR 0.02, 0.03, and 0.09
for buttons, knobs, and screens, respectively (see the vertical dashed
lines). An FRR of 0.10 means that on average 10 out of 100 pairing
attempts fail, and thus a user is expected to perform 100/90=1.1
pairing attempts for pairing one device.

Figure 7 shows the performance when random pauses are in-
troduced during pairing. We find that the FAR can be significantly
improved—the FAR grows very slowly as the threshold value in-
creases. The results indicate that random pauses can enhance the
discriminability of each pairing. If security is particularly impor-
tant for certain applications, we can set the FAR as 0.00 and T2Pair
achieves (FAR, FRR)=(0.00, 0.03) for buttons, (0.00, 0.09) for knobs,
and (0.00, 0.07) for screens (see the vertical dashed lines). Thus, se-
curity is much improved with usability keeping good. But if vanilla
fuzzy commitment (Section 4.1) is used, we can only achieve (FAR,
FRR) (0.00, 0.81) for buttons, (0.00, 0.48) for knobs, and (0.00, 0.73)
for screens, showing heavily degraded accuracies.

7.2 Resilience to Mimicry Attacks

This section evaluates the resilience of T2Pair (based on the thresh-
olds selected in Section 7.1) to mimicry attacks for two types of
pairing operations: one without pauses (Type-I ) and the other with
pauses (Type-II ). We use FAR to measure the success rate of attacks.
We evaluate the resilience using Dataset II (see Section 6.2).
Resilience toMA-obstructed. The attacker (𝒜) stands behind the
victim (𝒱) with a distance of 2–3 meters and does not have a clear
view of 𝒱 ’s hand movements. As shown in Table 2, for the pairing
operations of Type-I, T2Pair can successfully identify 96.0%, 95.3%
and 90.7% of attacks on buttons, knobs, and screens, respectively.
The performance can be greatly improved if the random pauses
are considered—specifically, for the Type-II operations, T2Pair can
successfully defend against all the attacks on knobs, and 99.3% of
attacks on screens and buttons.
Resilience toMA-clear.𝒜 stands next to𝒱 and has a clear view of
𝒱 ’s handmovements. As shown in Table 2, for the Type-I operations,
the attackers’ success rate increases, especially for the screen-based
device. However, for the Type-II operations, the attackers’ success
rate is still very low. The results demonstrate that the random
pauses during each pairing can increase the difficulty for attackers
tomimic the victims’ handmovements. Thus, the pairing operations
with random pauses are more secure.
Resilience to MA-trained. How to train the attacker is described
in Section 6.2). Compared to the Type-II operations, FARs for the
Type-I operations increase sharply (up to 27.4%), which reveals a
noticeable weakness of pairing without pauses. The pauses make
the intervals more unpredictable and difficult to mimic. To eliminate
the weakness, our protocol performs self-checking at Phase 2 in
Table 1, which aborts pairing if there are no pauses.

7.3 Randomness and Entropy

Randomness. The randomness level of the time interval between
two consecutive events directly affects the entropy of evidence.
We notice that it ranges from large values when the user pauses to
small ones when she presses/twists/swipes quickly. It is challenging
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(a) Button-based device pairing.

10 15 20 25 30 35 40
Threshold (bits)

0.0

0.1

0.2

0.3

0.4

R
at

e

False Acceptance Rate
False Rejection Rate

(b) Knob-based device pairing.
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(c) Screen-based device pairing.

Figure 6: FARs and FRRs with different threshold values for pairing operations without random pauses.
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(a) Button-based device pairing.
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(b) Knob-based device pairing.
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(c) Screen-based device pairing.

Figure 7: FARs and FRRs with different threshold values for pairing operations with random pauses.

Table 2: FARs under mimicry attacks. (Legend: 𝐴𝑖 stands for the 𝑖th attacker.)

Attacks Pauses? Device 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8 𝐴9 𝐴10 Avg.

MA-obstructed

No clear view
Untrained attackers

No
Button 0.07 0.0 0.13 0.0 0.07 0.07 0.0 0.07 0.0 0.0 0.040
Knob 0.07 0.07 0.0 0.07 0.0 0.13 0.0 0.07 0.07 0.0 0.047
Screen 0.07 0.13 0.13 0.07 0.13 0.07 0.07 0.13 0.07 0.07 0.093

Yes
Button 0.0 0.0 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.007
Knob 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.000
Screen 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.0 0.007

MA-clear

Clear view
Untrained attackers

No
Button 0.07 0.13 0.20 0.07 0.07 0.07 0.07 0.0 0.13 0.13 0.093
Knob 0.13 0.07 0.13 0.13 0.07 0.20 0.0 0.07 0.13 0.07 0.100
Screen 0.07 0.13 0.33 0.27 0.20 0.33 0.07 0.13 0.20 0.07 0.180

Yes
Button 0.0 0.0 0.07 0.0 0.0 0.07 0.0 0.0 0.07 0.0 0.020
Knob 0.07 0.0 0.07 0.0 0.0 0.13 0.07 0.0 0.0 0.07 0.040
Screen 0.0 0.07 0.0 0.07 0.07 0.0 0.0 0.0 0.0 0.0 0.020

MA-trained

Clear view
Trained attackers

No
Button 0.20 0.27 0.27 0.40 0.20 0.20 0.33 0.27 0.33 0.27 0.274
Knob 0.27 0.20 0.27 0.33 0.20 0.13 0.27 0.20 0.40 0.13 0.240
Screen 0.20 0.07 0.13 0.27 0.33 0.20 0.13 0.20 0.20 0.07 0.180

Yes
Button 0.0 0.07 0.0 0.07 0.07 0.07 0.07 0.0 0.07 0.0 0.040
Knob 0.0 0.0 0.07 0.07 0.0 0.07 0.07 0.0 0.13 0.0 0.040
Screen 0.0 0.0 0.0 0.0 0.07 0.07 0.0 0.0 0.13 0.0 0.027

to examine their randomness as plenty of samples are required. The
prior work [14, 30] also confirms this challenge and directly assumes
the human generated events are random.

We instead examine the randomness of the collected intervals
over a limited range. Similar to H2H [39], we study whether the six
least significant bits of the time intervals are randomly distributed.
We verify it by applying NIST statistical test suite [40] on the distri-
bution of our time interval bits. It is a widely used randomness test
suite [39, 45, 46]. Our dataset, which is subsampled from Dataset
I and II based on users, has a size of 19.2 Kbits consisting of 3200
intervals for each type of pairing operations.

The outputs of the NIST tests are 𝑝-values. A 𝑝-value represents
the probability that the input bit sequence is generated by a random

bit generator [40]. If a 𝑝-value is less than a chosen critical value
(usually 0.01), the null hypothesis for randomness is rejected. Table 3
shows that all the 𝑝-values are larger than 0.01 for the three types
of devices. The results confirm the randomness.
Entropy analysis. We use 𝐼1 to denote the set of intervals, each
of which is generated without pauses, and 𝐼2 to denote the set of
intervals, each with a pause. The possible range of 𝐼1 is related
to the specifications of a given device (e. g., size, rotation/swiping
range) and the device users’ behavior habit, while the range of 𝐼2 is
mainly determined by device users.

As many human characteristics show normal distributions [7],
we assume 𝐼1 and 𝐼2 among all users follow a normal distribution
each. The entropy (in bits) of a time interval (with mean denoted
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Table 3: NIST statistical test results. A 𝑝-value greater than

0.01 indicates a randomness test is passed.

Test 𝑝-value
Button Knob Screen

Frequency 0.327 0.581 0.300
Block Frequency 0.854 0.118 0.807

Runs 0.190 0.697 0.046
Longest Run 0.249 0.624 0.164

Approximate Entropy 0.051 0.369 0.095
FFT 0.567 0.567 0.829

Cumulative Sums (Fwd) 0.537 0.318 0.505
Cumulative Sums (Rev) 0.476 0.681 0.343

Serial 0.387 0.251 0.360
0.601 0.074 0.796

Table 4: Average entropy and estimated bit rate.

Button Knob Screen
𝜎 of 𝐼1 (ms) 67 72 53
𝜎 of 𝐼2 (ms) 501 362 424
Entropy (bits) 34.3–38.5 34.3–37.9 32.3–36.6

Bit Rate (bit/sec) 10.3–13.2 10.6–13.6 11.6–14.8

as ` and standard deviation as 𝜎) can be computed as follows [35].

𝐸𝑖 = 12 log2(2𝜋𝑒𝜎2) (2)

Assuming each piece of evidence contains 𝑛1 intervals from 𝐼1 and
𝑛2 intervals from 𝐼2, the evidence entropy can be computed as:

𝑙𝐸 = 𝑛1 ∗ 𝐸1 + 𝑛2 ∗ 𝐸2 + log2 (
𝑛1 + 𝑛2
𝑛2

) (3)

The term (𝑛1+𝑛2
𝑛2

) is introduced to account for the random occur-
rence positions of the 𝑛2 pauses in the evidence.

The total time of generating a piece of evidence is denoted as 𝑇 .
Then, the bit rate is 𝑙𝐸⇑𝑇 .
Entropy evaluation using a real-world dataset. Figure 8 shows
the distributions of the time intervals of 𝐼1 and 𝐼2 among all the
users. We test the normality of the distributions with one-sample
Kolmogorov-Smirnov testing [24]. For each device, more than 86%
of the time intervals follow the normality assumption. Thus, most
of the data for each device could be abstracted into a normal dis-
tribution. The prior studies [10, 21] of keystrokes and/or screen
touches are consistent with our finding.

We then use the pairing operations on buttons as an example
to compute the entropy. As summarized in Table 4, the intervals
of 𝐼1 mostly fall in [100ms, 500ms] with the standard deviation
𝜎1 67ms, while those of 𝐼2 in [800ms, 3000ms] with the standard
deviation 𝜎2 501ms. With the base value = 10ms (see Section 7.4), 𝜎1
and 𝜎2 become 6.7 and 50.1, respectively. According to our entropy
definition in Equation 2, the entropy for one interval in 𝐼1 is around
4.8 bits, and that in 𝐼2 around 7.7 bits. As each piece of evidence
consists of 4 (or 5) intervals of 𝐼1 and 2 (or 1) intervals of 𝐼2, the
total entropy is around 38.5 (or 34.3) bits. The mean values for the
intervals of 𝐼1 and 𝐼2 are 238ms and 1402ms, respectively, so the
total time for generating a piece of evidence is 3756ms (or 2592ms).
The bit rate is around 10.3 bit/s (or 13.2 bit/s).
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Figure 8: Time interval distributions.

7.4 Study of Parameters and Stability

For the following experiments, we focus on pairing with pauses.
Evidence length. The evidence length is represented as the num-
ber of time intervals, which is related to the number of salient
points. Longer evidence provides better security, but also requires
longer time to finish the pairing, which sacrifices usability. Thus,
the evidence length is a trade-off between security and usability.

To study its impact, we set the FRR to a fixed value 0.05, and
examine the changes of the FAR as the evidence length varies.
Figure 9(a) shows the FARs with different evidence lengths for the
three types of devices. As expected, if the evidence length is longer,
the FAR is lower—the security is better. For knob-based devices, an
evidence length 7 is appropriate as a longer length can only improve
the FAR a little bit. For both button-based and screen-based devices,
the FAR is below 0.01 if the evidence length is longer than 6. Hence,
6 is an appropriate length for them.
Base value. The base value is used to encode the time intervals.
In general, a larger base may generate a less accurate encoding of
the time interval because of more coarse approximations, but it
can create a shorter encoding of the evidence that is more efficient.
Thus, selecting an appropriate base value is a trade-off between
accuracy and efficiency. For simplicity, we use EER to study the
impact of the base by weighting the FAR and FRR equally.

Figure 9(b) shows the EERs for the three types of pairing by vary-
ing the base from 1 to 30ms. We find that the EERs grow slowly as
the base increases. Although a base smaller than 10 can slightly im-
prove EERs, it also yields long evidence. Considering both accuracy
and efficiency, we choose the base value as 10ms.
Sampling rate. The sensor data from the wristband (“helper”) is
used to extract salient points and generate the evidence. A low sam-
pling rate of the sensor data may result in inaccuracy in detecting
salient points. While a high sampling rate can help capture more
subtle motions, it also introduces a higher burden on data collection.
An optimal sampling rate needs to be determined by considering
both accuracy and efficiency.

Figure 9(c) presents the performance of T2Pair by changing the
sampling rate from 10Hz to 100Hz at a step of 10Hz. We observe
that button clicking requires a sampling rate higher than 80Hz to
achieve the best performance, and knob rotation and screen swiping
only require a sampling rate higher than 50Hz. We thus select a
sampling rate of 80Hz, 50Hz, and 50Hz for button clicking, knob
rotation, and screen swiping, respectively.
IoT device position. IoT devices may be installed/placed at dif-
ferent positions based on the demand (e.g., whether needing to be

Session 1E: Cyberphysical Systems  CCS '20, November 9–13, 2020, Virtual Event, USA

318



2 3 4 5 6 7 8 9 10
Evidence length (number of events)

0.0

0.1

0.2

0.3

0.4

0.5

FA
R

Button
Knob
Screen

(a) FAR vs. evidence length

1 5 10 15 20 25 30
Base value

0.00

0.02

0.04

0.06

0.08

0.10

E
E

R

Button
Knob
Screen

(b) EER vs. base value

10 20 30 40 50 60 70 80 90 100
Sampling rate (Hz)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
E

R

Button
Knob
Screen

(c) EER vs. sampling rate

Button Knob Screen
0.00

0.02

0.04

0.06

0.08

E
E
R

Position(a)
Position(b)
Position(c)

(d) EER vs. device position

Button Knob Screen
0.00

0.02

0.04

0.06

0.08

0.10

E
E

R

Wearing a wristband
Holding a phone

(e) EER vs. helper

  Plastic|Rubber 
 Buttons

Large|Small 
 Knobs

     5X|Atom 
 Screens

0.00

0.02

0.04

0.06

0.08

0.10

E
E

R

(f) EER vs. IoT device

Figure 9: Impacts of different parameters and experimental settings.

connected to a power source) or the user’s preference. We examine
three common positions that a device may be installed/placed: (a)
plugged into a wall outlet; (b) placed on a table; (c) held in a hand.

Figure 9(d) shows the EERs for the three types of pairings in
terms of different device positions. For buttons and screens, T2Pair
performs slightly better when the devices are in the positions (a)
and (b), while for knobs, the positions (a) and (c) achieve slightly
better performance. Overall, the results indicate that different device
positions have little impact on the pairing performance.
Different kinds of helpers. Besides wristbands, we also test the
feasibility of holding a smartphone to perform pairings. We present
the EERs in Figure 9(e) for the three types of pairings using the
two different helpers: wristband and smartphone. When the smart-
phone is used, T2Pair achieves an EER of 0.017, 0.031, and 0.017 for
buttons, knobs, and screens, respectively. No obvious difference is
observed in the pairing performance between the two helpers. We
thus conclude that holding a smartphone for pairings is feasible.
Nevertheless, we find the usability is not satisfactory when the user
holding a smartphone twists a small knob.
Different sizes and materials of IoT devices. We further study
whether T2Pair can work well on IoT devices with different sizes
and materials. We have two knob-based devices (a large knob and
a small knob), two button-based devices (a rubber keypad and a
plastic keypad), and two touchscreens (a smartphones Nexus 5X
and a Unihertz Atom that have different screen sizes). Dataset I is
collected using the large knob, the plastic keypad, and the Nexus 5X
with a relatively large screen. We then recruit another 5 participants
to perform the pairing operations on the other three devices.

Figure 9(f) shows the EERs for the six devices. For any two
devices with the same type of UI, we do not observe any significant
difference between their performance. Thus, the device size and
material have little impact on the pairing performance of T2Pair.

Table 5: Comparison with other works.

Method (FAR, FRR) Time(s)
ShaVe/
ShaCK [30] (0.0, 0.10–0.12) 3

SFIRE [12] (0.0, -) 6
Tap-to-Pair [49] (-, 0.117) 15–20
Checksum [1] (-, 0.10) 5.7
T2Pair (0.0, 0.03–0.09) 3.2–4.1

7.5 Efficiency

We next evaluate the efficiency of the pairing operations; here we
only consider the pairing operations with random pauses. Specifi-
cally, we measure the time used for performing the pairing operations
with an evidence length of 7 for knobs, 6 for screens and 6 for
buttons (see Evidence Length in Section 7.4).

For knobs, screens, and buttons, the mean time for pairing is
2.8s (SD=0.85), 2.3s (SD=0.66), and 3.2s (SD=0.93), respectively. The
pairing operations require very short time to finish and are efficient.

We also measure the time used for running fuzzy commitment
and PAKE to establish a shard key between two parties. The average
execution time on the smartwatch and the Arduino controller is
0.9s (SD=0.37) and 0.7s (SD=0.25), respectively.

Note that the “big silence” (≤ 3s) before each pairing is not in-
cluded here; it is considered in the Usability Study in Appendix A.

7.6 Comparison with Other Approaches

Table 5 shows the comparison of T2Pair with some prior works.
Our work achieves better accuracies than these works [1, 30, 49].
Moreover, T2Pair is more efficient than Tap-to-Pair [49], SFIRE [12],
and Checksum [1] in terms of the pairing time. E.g., Tap-to-Pair
needs at least 15 seconds, while our system only needs up to 4.1
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seconds (the maximum time observed for performing pairing oper-
ations 3.2s plus the time running our fuzzy commitment 0.9s). Note
that each pairing approach requires some initialization phase, and
the statistics about the initialization time are not available in many
of the works; we thus exclude the initialization time for fair compar-
ison. But even the initialization time (“big silence”) is considered,
the maximum time of 7.1s (= 4.1 + 3) still shows our pairing is fast.
In contrast, Perceptio [14] takes hours or even days for pairing.

8 RELATEDWORK

Proximity-based pairing. Some approaches [19, 29, 37] trans-
form the Received Signal Strength (RSS) values into a key, while oth-
ers exploit Channel State Information (CSI) [25, 46]. As a user moves
her smartphone near an IoT device, Move2Auth [48] and SFIRE [12]
authenticate the device by checking whether the RSS changes cor-
relate the motion trace of the smartphone. Tap-to-Pair [49] has a
user tap, to create RSS changes, the wireless transmitter on an IoT
device following the instructions displayed by another device (e.g.,
a smartphone) to authenticate the IoT device. Many only authenti-
cate the IoT device to the user’s mobile device [12, 48, 49], but not
the other way around; hence, IoT devices may get paired with the
attacker’s device, while T2Pair provides mutual authentication.

The changes in ambient context, such as audio [42] and lumi-
nosity [32], can also be used to prove co-presence. Perceptio [14]
clusters contextual information detected by devices equipped with
different sensors to derive a key. Like our work, it also aims at a
pairing approach applicable to heterogeneous IoT devices. But it
assumes there exists a physical security boundary (e.g., the house
wall) and no malicious devices within the boundary. In contrast,
T2Pair largely eliminates the threat of co-located malicious devices.
Perceptio has the advantage of pairing multiple devices without
human intervention, but it may take a very long time for pairing
some devices (e.g., a laundry washer that is used once per week
and a glass-break sensor that is triggered only once during multiple
years), while T2Pair takes seconds for pairing a device. Further-
more, Perceptio has no guarantee whether a device can be paired
correctly, especially for devices (e.g., in different floors) that per-
ceive different contextual information.

Both wireless signal changes and the ambient context can be
sensed and thus exploited by co-located malicious devices.
Physical contact-based pairing. Some approaches require users
to have physical contact with IoT devices for pairing purposes.
By shaking [30] or bumping [15] two devices simultaneously, the
motion data on both devices becomes correlated and can be used for
pairing. Touch-And-Guard [45] has the user wearing a wristband
touch the target IoT device, and the wristband’s vibration motor
creates resonance, which is measured by the accelerometers of
both sides and used for pairing. Sethi et al. [43] require users to
perform synchronized drawings on two touchscreens; the resulting
drawings can be used for pairing. By shaking [36] or moving [1]
an IoT device according to the public key shown on the display,
the key is authenticated. But all these approaches require inertial
or touch sensors embedded in the IoT device or a metal pin on its
surface [47], which are not available on many IoT devices. While
many authentication approaches [27, 28, 33] based on physical
contact (including our prior work P2Auth [23]) have been proposed,

they all assume a secure communication channel between devices,
while the pairing task cannot assume it.

There exist other approaches that do not fall in either of the two
categories above. SiB [31] authenticates other device’s public key by
taking a picture of a 2D bar code encoding the hash of the public key
of the other device. VIC [41] improves it by presenting the key with
a binary display. Many vendors embed a hard-coded password into
the firmware of an IoT device, and print the password on the user
manual, so the vendor has to carefully make sure the device and the
unique manual are packaged together correctly, which is a burden
to vendors [12, 48]. Some vendors simply use an identical password
for all devices, which is a critical security flaw. Moreover, given an
IoT device (such as a smart blood-pressure meter in Walmart) that
needs to get paired with many users’ personal mobile devices, a
single password for all users is insecure, while T2Pair provides a
secure and usable solution.

9 LIMITATIONS

T2Pair largely eliminates the threat of co-located malicious devices,
but not completely. If a nearby malicious device (or an attacker) has
a camera that points at the user performing authentication, T2Pair
is vulnerable to man-in-the-middle attacks assisted by computer
vision techniques. Similarly, if the authentication operations gener-
ate noises, for example, in the case of pressing a button, a nearby
malicious device which has a microphone can also be used to fa-
cilitate MITM attacks. How to mitigate side-channel attacks that
infer information from noises has been studied [3, 4]. It is worth
pointing out that, as analyzed in Section 4.2, offline attacks based
on recorded videos or audios do not work.

It is not very usable to hold a large smartphone and twist a small
knob. But given a large knob (e.g., a Nest Thermostat), a button
or a touchscreen, it is not an issue. As wearable devices, such as
smartwatches and fitness trackers, become increasingly popular,
the usability of T2Pair can benefit from the trend.

10 CONCLUSION

IoT devices lack traditional user interfaces and are diverse in nature.
A secure pairing approach that is applicable to heterogeneous IoT
devices is urgently needed. We have presented T2Pair, which is
secure and applicable to a large variety of IoT devices. It can be
applied to IoT devices without requiring any hardware modifica-
tions, sensor calibration, or clock synchronization. We designed
very simple physical operations that allow users to finish a pairing
process conveniently in a few seconds. We proposed faithful fuzzy
commitment, which ensures small distances between encodings
faithfully indicate small differences between the encoded values,
leading to high pairing accuracy. Pauses and self-checking were
proposed to enhance the resilience of T2Pair to powerful attacks. A
comprehensive evaluation along with a user study was performed,
showing its high security, usability, stability, and efficiency.
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A USABILITY STUDY

This study investigates the usability of T2Pair and compares it
with the password-based pairing mechanism as the baseline, which
is currently one of the most widely used pairing mechanisms.

A.1 Recruitment and Design

We recruit 20 participants (9 females) by posting the recruitment fly-
ers on the university campus. The study is advertised as “evaluating
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Figure 10: Usability surveyed using questions adapted from SUS [9].

the usability of different pairing mechanisms for IoT devices”. Most
participants are not from the CS department and none of them have
computer security background. Specifically, 3 participants are local
residents near the campus, 15 are students, and 2 are staff/faculty
members. Their ages range from 20 to 70.

Considering the social desirability bias, we do not make the
participants aware that T2Pair is a mechanism that we are working
on. Instead, we inform them that we are investigating the usability
of different pairing methods. For the password-based mechanism,
as a Wi-Fi password usually requires a minimum of 8 alphanu-
meric characters [17], we randomly create a 8-char alphanumeric
password, and show the password to the participants before pairing.

The experiment is conducted in a lab environment. We first
ask each participant to sign a consent form and fill out an initial
survey to collect the demographic information. We then introduce
the two pairing mechanisms (i.e., T2Pair and the password-based
mechanism) to them in a random order to avoid the learning bias.
Specifically, for T2Pair, we introduce the three pairing operations
with respect to the three types of IoT devices, while a smartphone is
used for inputting a password. Next, each participant is instructed
to perform two pairing attempts on each of the three IoT devices
as well as the smartphone to get familiar with T2Pair and the
password-based mechanism. These attempts are excluded from
further analysis. After that, each one performs another three pairing
attempts on each IoT device and the smartphone, respectively.

Finally, the participants are asked to rate the following five state-
ments to examine user preferences and usability (the rating score is
from 1 to 5, where 1 stands for strongly disagree, and 5 for strongly
agree): (a) I thought the pairing method was easy to use; (b) I am
satisfied with the amount of time it took to complete the pairing; (c)
I thought the pairing method was convenient; (d) I would imagine
that most people would learn to perform the pairing very quickly;
and (e) I would be happy to use this pairing method frequently.
The questions are inspired from the metrics used in previous stud-
ies [6, 22] and adapted based on SUS [9]. We do not use all the 10
questions in SUS as some do not fit our scenario. At the end, we
conduct a brief interview with the participants to gain insights into
what they like and dislike about each mechanism.

A.2 Usability Results

Perceived usability.We investigate the usability from five aspects
based on the five statements above: easy to use, quick, convenient,
learn quickly, and use frequently. Figure 10 shows the results. The

overall scores for button clicking, knob twisting, and screen swiping
are (21.70± 3.29), (19.80± 3.76), and (21.65± 3.54), respectively. For
password-based pairing, the overall score is (18.45 ± 3.37).

To analyze the statistical significance of these results, we first
hypothesize that T2Pair shows similar usability as password. We
use the one-way ANOVA test to examine the hypothesize. The
result of the one-way ANOVA test shows that (i) there are signifi-
cant differences between button clicking and inputting an 8-char
password (𝐹(1, 19) = 9.057, 𝑝 = 0.005 < 0.05) and between screen
swiping and inputting password (𝐹(1, 19) = 8.149, 𝑝 = 0.007 < 0.05),
and thus our hypothesis can be rejected; and (ii) there is no sig-
nificant difference between knob twisting and inputting password
(𝐹(1, 19) = 1.358, 𝑝 = 0.251). We thus conclude that users perceive
better usability with button clicking and screen swiping than using
an 8-char password, and similar usability for knob twisting and
using an 8-char password.
Pairing time. We do not consider the time used for running the
pairing protocol as we only focus on the time used by the user. For
T2Pair, the mean time for performing a pairing on the button, knob,
and screen is 5.2±0.57s, 6.0±0.83s, and 5.6±0.73s, respectively.With
respect to password, the mean time for reading and inputting an
8-char alphanumeric password is 9.5 ± 0.78s. Thus, our mechanism
is more efficient.
Failure rate. For T2Pair (based on the thresholds selected in Sec-
tion 7.1), each participant performs three attempts on each device—
there are 60 pairings for each device. We see 3 failures out of 60
attempts for button, 2 failures for knob, and 4 failures for touch-
screen. Then, each one reads and inputs a given password three
times on the smartphone—there are 60 pairings and 5 failures. Thus,
T2Pair has a slightly lower failure rate than the password-based
mechanism.
Feedback.We also collect their comments about the advantages
and disadvantages of our three pairing operations from different
perspectives. We here report some representative comments: com-
ments from seven subjects indicate that they like the button clicking
pairing operations as they require little effort and/or burden; some
also mention that twisting the knob for too many rounds can lead
to fatigue, but 7 twistings used by T2Pair are acceptable.

B SENSING PAIRING OPERATIONS

(BUTTONS AND SCREENS)

The correlation of IMU data and pairing operations (see Section 3.2).
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Figure 11: The acceleration data captured when users press buttons, and their correlation with button-pressing operations.
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Figure 12: The gyroscope data captured when users swipe touchscreens, and their correlation with swiping operations.
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