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ABSTRACT

Existing symbolic execution typically assumes the analyzer can
control the I/O environment and/or access the library code, which,
however, is not the case when programs run on a remote propri-
etary execution environment managed by another party. For exam-
ple, SmartThings, one of the most popular IoT platforms, is such a
cloud-based execution environment. For programmers who write
automation applications to be deployed on IoT cloud platforms, it
raises significant challenges when they want to systematically test
their code and find bugs. We propose fuzzing-assisted remote dy-
namic symbolic execution, which uses dynamic symbolic execution
as backbone and utilizes fuzzing when necessary to automatically
test programs running in a remote proprietary execution environ-
ment over which the analyzer has little control. As a case study,
we enable it for analyzing smart apps running on SmartThings.
We have developed a prototype and the evaluation shows that it is
effective in testing smart apps and finding bugs.
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1 INTRODUCTION

The rapid proliferation of Internet-of-Things (IoT) devices has ad-
vanced the development of smart homes and factories. By installing
automation apps (also called IoT apps or smart apps) on IoT plat-
forms, users can integrate heterogeneous IoT devices for convenient
automation. Popular IoT platforms include Samsung SmartThings,
Amazon Alexa, and Google Home.

On platforms such as SmartThings, there is a lengthy process
to manually review an official smart app [64], which is incomplete,
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error-prone and time-consuming. On the other hand, many develop-
ers enjoy writing custom smart apps and share them on the Smart-
Things community forum so that others can use them [62, 63, 70, 71],
which however does not enforce code review, causing even more
bugs to exist. This points to a critical need for automated testing of
smart apps for bug discovery.

A promising testing technique is symbolic execution [34], an au-
tomated path exploration approach that is powerful for finding bugs.
While many symbolic executors have been proposed for analyzing
Windows programs [34], Linux programs [11, 12, 23, 49, 50] and
Java programs [51, 52, 59], none support the analysis of IoT apps.
Due to unique characteristics of IoT platforms, there are multiple
challenges for symbolic execution analysis of IoT apps.
Challenge 1: Closed-source platform proprietary APIs. Exist-
ing classic symbolic execution often assumes the analyzer and the
execution environment reside together locally, and the I/O environ-
ment and the API layer can be modeled conveniently. However, in
the case of remote proprietary computing platforms, such as IoT
cloud platforms, very often the assumptions are not valid.

IoT apps frequently interact with the platform by invoking APIs,
e.g., to retrieve environment data (such as temperature and device
status), which are proprietary with no code released to the public.
For API calls, classical symbolic execution either sets the return
variables as new symbolic inputs [54], causing imprecision, or ap-
plies function modeling [9, 32], which requires access to the API
code or detailed documentation.

In order to analyze IoT apps running in a remote proprietary en-
vironment, we propose remote dynamic symbolic execution (remote
DSE) to remotely and symbolically execute them. To enable remote
DSE, our insight is that IoT platforms usually support logging and
messaging [73], which makes information collection viable. Specifi-
cally, we leverage logging service to collect information needed for
path exploration and send it back as messages to the local analyzer
for making strategic exploration decisions.
Challenge 2: Achieving both precision and completeness of

remote DSE. Although dynamic symbolic execution can recover
from imprecision of classic symbolic execution caused by API calls,
it often sacrifices completeness1 for missing execution paths. While
missing some paths might not be a big issue for large-sized pro-
grams, such as web applications [3, 5, 55] and Android apps [31, 86],

1Completeness here refers to full path coverage, following the definition in [13] and [23].
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it has a significant impact on small-sized programs, such as IoT
apps having a relatively small number of paths. How to achieve both
precision and completeness for analyzing IoT apps is challenging.

To tackle this challenge, we propose selective code-segment
fuzzing to assist DSE. It (i) automatically identifies the code snippet
of a smart app that causes missing execution paths, and (ii) fuzzes
only this part of code to complement symbolic execution. The result
from selective code-segment fuzzing is combined with the symbolic
path constraints from DSE to explore paths.2 Our insight is that
symbolic inputs (e.g., temperature, home mode, switch state) of
smart apps usually have a small to moderate number of discrete
values. Thus, selective code-segment fuzzing that fuzzes a code
segment by iterating over values of the symbolic inputs is feasible
(see Section 6). This is different from general programs, where their
inputs usually have an infinite or huge number of possible values.
Challenge 3: Communication cost due to remote execution.

As IoT apps run remotely, the request handling and communication
cost between the local analyzer and remote cloud cannot be omitted.
We propose boosted generational search, which speeds up the
analysis by wrapping multiple test inputs in one test request.

There are some other challenges. Smart apps frequently interact
with the platform to retrieve environment data, which may be in-
volved in conditional statements to determine whether a branch
should be taken. However, it is not allowed to vary environment
settings on a platform once an app starts. Our solution is to pre-
cisely identify variables storing environment data and set them as
symbolic inputs. Moreover, smart apps have grammar peculiarities,
such as closure [69]. How to deal with the peculiarities is challenging.

We have overcome these challenges, and implemented a sys-
tem named Westworld, which enables fuzzing-assisted dynamic
symbolic execution of IoT apps running on a remote platform. To
make the work concrete, we showcase the ideas and techniques on
SmartThings, one of the most popular IoT device integration plat-
forms. The source code for Westworld and datasets are publicly
available.3 We evaluate Westworld with various experiments to
measure its precision, completeness, efficiency, and effectiveness
in bug finding. Our experiment results show that it is effective
and efficient in testing IoT apps and finding bugs (e.g., division by
zero, array out of bound, and null-pointer dereference). We made the
following contributions.

• Being the first in the literature, we present a system that
enables dynamic symbolic execution of IoT apps running on
a remote platform, of which the API code is not available to
the analyzer and program execution states cannot be cloned.

• Selective code-segment fuzzing is proposed to assist dynamic
symbolic execution to effectively and precisely handle closed-
source proprietary API calls. It captures a unique character-
istic of smart apps, whose symbolic variables usually have a
small number of discrete values.

• Boosted generational search is proposed to save the analysis
cost and greatly increases the efficiency of remote DSE.

• We have implemented a prototype named Westworld, and
demonstrate its efficiency and effectiveness in bug finding.

2Driller [67] adopts symbolic execution assisted fuzzing, while our work uses fuzzing-
assisted symbolic execution (see Section 9).
3https://github.com/lannan/Westworld

2 BACKGROUND

2.1 SmartThings IoT Platforms

SmartThings is a proprietary platform owned by Samsung. It pro-
vides a software stack used to develop applications that monitor
and control smart devices. SmartThings includes four main compo-
nents: hub, smart apps, smart devices, and cloud. The hub bridges the
communication between connected smart devices and the cloud,
although WiFi-based IoT devices do not require a hub. Smart apps
are developed in Groovy (a dynamic, object-oriented language) and
run in the cloud. While SmartThings has recently started to sup-
port other languages, apps in Groovy are still the most popular and
sophisticated ones, supported by different versions of SmartThings.
SmartThings and third-party developers share their smart apps’
code on GitHub [66] and community forum [65], respectively.

2.2 Symbolic Execution and Limitations

Classical Symbolic Execution. Symbolic execution is an analysis
approach to program path exploration [40]. Input variables are
represented using symbolic values. During path exploration, each
path corresponds to a symbolic path condition, which is solved by
a constraint solver to generate concrete inputs for the path.

Programs interact with the outside by calling library/system
functions, whose code may not be available or contained path con-
straints cannot be resolved; such functions are called uninterpreted
functions (see Section 3 of [13]). A key disadvantage of classical
symbolic execution is that it cannot generate accurate inputs when
handling them [13].

Limitations. For uninterpreted functions, classical symbolic ex-
ecution either sets the return variables as new symbolic inputs [54],
or applies function modeling [11].

• Smart apps frequently interact with the outside by invoking
platform proprietary APIs, whose code is not available to
the analyzer. If the return values of platform proprietary API
calls are set as new symbolic inputs, the generated test cases
will become imprecise, since the SMT solver does not know
how to handle a constraint like x == Fun(y).

• Function modeling needs precise understanding of the se-
mantics of each API, but detailed documentation of the APIs
used by smart apps is not available. Plus, it usually needs
tedious manual effort.

Dynamic Symbolic Execution (DSE). There are two main cate-
gories [13]. (1) Concolic testing executes a program starting with
some given inputs and gathers symbolic path constraints at condi-
tional statements along execution. The collected path constraints
are negated systematically or heuristically and solved with a con-
straint solver, yielding new inputs to exercise different paths.

(2) Execution-generated testing checks before every operation if
the values involved are all concrete [11, 12, 23]. If so, the operation
is executed concretely; otherwise, it is performed symbolically. If
an API function is met, it solves the current path condition for a
satisfying assignment, and uses the generated concrete values to
invoke this API function and the following operations.4

4Function summaries are also frequently used to handle API calls (for speeding up
symbolic execution) by encoding test results of an API using input preconditions and
output postconditions [32]. This method requires access to API code (see Section 3.1
of [32]) and is thus not applicable in our case.
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Figure 1: App configuration. Figure 2: Env. input.

Limitations. DSE uses concrete values to simplify constraints
and can generate inputs where classical symbolic execution gets
stuck. But this comes with a caveat: due to simplification, it sacrifices
completeness and could miss some execution paths [13]. While miss-
ing some paths might not be a big issue for large-sized programs,
such as web applications [3, 5, 55] and Android apps [31, 86], it
has a significant impact on small-sized programs like smart apps,
where completeness becomes critical. Thus, current DSE cannot be
directly applied to smart apps (see details in Section 3.2).

3 MOTIVATION

In this section, we first discuss the current method of testing smart
apps, and then use a smart app to illustrate the challenges of ana-
lyzing smart apps, which motivate us to propose our approach.

3.1 Current Method of Testing Smart Apps

SmartThings provides developers with a very primitive web inter-
face to the cloud-based execution environment. In order to test a
smart app, a developer needs to first fill app configurations and then
select environment inputs to submit a testing request.

Take Figure 1 and Figure 2 as an example. Figure 1 shows a
web interface for filling app configurations, including selecting a
humidity sensor and determining the range of the humidity level
to turn on/off the humidifier. The app configurations will become
variables in the app code and complete the app code’s logic. Figure 2
shows a web interface for inputting the environment input—the
current humidity level. Once the testing request is submitted, the
environment input is converted into an event, which triggers the
event handler that subscribes the event to execute. Finally, the
developer reads logs to find bugs. It can be seen that it is troublesome
to manually test smart apps using such a primitive web interface.
Thus, automated app testing is critically needed.

3.2 Limitations of Current Concolic Testing

Figure 3 shows four examples, where the behavior of sysAPI is
unknown and the code is unavailable. Current concolic testing
may be able to achieve full path coverage for the first two, but it is
difficult to achieve completeness for the latter two.
Example 1. Suppose that concolic testing starts with the initial
input x = 2, where x is a symbolic input. In the first execution, the
true branch of the first if statement (Line 2) and the false branch of
the second if statement (Line 4) are taken. The collected symbolic
path condition is (x < 3) ∧ (x ≥ 0). Concolic testing negates it and
solves (i) (x < 3) ∧ (x < 0) to get x = −1, and (ii) x > 3 to get
another input x = 4, which executes different paths.
Example 2. Suppose the initial values of the symbolic inputs are
x = 2 and y = 4. In the first execution, the true branch of the first if
statement (Line 2) is taken. Assume the value of the return variable
ret of sysAPI is 10. It then proceeds to explore the true branch of
the second if statement (Line 4) and records the path constraint
y < 10. To explore the false branch of the second if statement
(Line 4), it keeps the value of x , but changes the value of y to make
y ≥ 10, which results in x = 2, and y = 20.
Example 3. In Example 2, the return variable of sysAPI is compared
to a symbolic input, while here the return variable is compared to a
constant value. Thus the solution above—i.e., by keeping the value
of x and changing the value of y to reverse the result of (y < ret)—
does not work. The true branch of the second if may be missed due
to the difficulty in finding the value of x that satisfies the condition.
Example 4. The return value of sysAPI is determined by both x
and y (Line 3). Thus, the solution in Example 2 does not work here
either: if the value of y is changed, ret’s value may also be changed.
As a result, a path divergence [33] occurs as the path constraint
y < ret becomes non-deterministic.

It is difficult for current concolic testing to achieve completeness
in Examples 3 and 4. Current concolic testing, if directly applied,
could miss a large portion of execution paths of smart apps, where
completeness is critical for such small-sized programs.

3.3 A Motivating Example

Figure 4 shows a smart app rise-and-shine. The app needs the user
to select a device to work as motionSensor and then fill the app
configurations: specifying the values for timeofDay, endTime, and
timeAgo (Lines 2-5). It then subscribes to a motion event with the
value of active, and registers the motionActiveHandler method
(Line 9), which is invoked when a motion event with the value of
active is triggered (Line 12).

motionActiveHandler first calculates a time frame determined
by startTime (influenced by timeOfDay and the current time t ) and
terminTime (influenced by startTime and endTime) (Lines 13-16). If
the current time t is within the time frame (Line 18), it checks if
the mode has been changed in the past time period determined by
timeAgo (Lines 19-21). If not and the mode is not “Home”, the mode
is changed to “Home” (Lines 24-25). Here, the code of the platform
APIs, e.g., timeTodayAfter and eventsSince, is unavailable.
Execution-generated testing (EGT) does not work. It is diffi-
cult to perform EGT for smart apps as cloning execution states is
not feasible on IoT platforms (Section 2.2).
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Figure 3: Four code examples. ✓ indicates the examples for which concolic testing may achieve complete path coverage, while

× shows the examples where it is difficult for concolic testing to achieve completeness.

Figure 4: An example smart app rise-and-shine.

Current concolic testing does not work. (1) Assume in the first
execution, the false branch of the first if statement (Line 18) is taken.
To take the true branch, one way is to keep the values of timeOfDay
and endTime (such that the values of startTime and terminTime keep
the same) and change the value of t. But by changing the value of t,
a path divergence occurs (like Example 4) as startTime is influenced
by t. (2) In the second if statement (Line 24), alreadySet, which
is influenced by timeAgo and the return variable of eventsSince
(Lines 19-21), is compared to a constant value true. It is unknown
how to set timeAgo to explore both branches—similar to Example 3.
Thus it is difficult for current concolic testing to achieve full path
coverage when analyzing smart apps.

4 OVERVIEW

4.1 Design Goals

We have the following goals about our system Westworld.
• Precision. The generated concrete inputs should take the
same path as predicated by the system.

• Completeness. The system should achieve high path coverage,
i.e., it can test (almost) all paths of a program.

• Effectiveness. The system should be applied to generating
test cases and finding bugs in a smart app.

• Efficiency. It should not take a long time for the system to
finish the symbolic execution of a smart app.

4.2 System Architecture

Figure 5 shows the architecture of Westworld, consisting of three
components: Code Instrumentation, Web Interaction, and Path Anal-
ysis. Given a smart app, Westworld generates two types of instru-
mented apps: (1) a PC-collection app is the app instrumented with
code that collects the symbolic path condition (PC) via remote DSE
(Section 5); and (2) a seg-fuzzing app is the app instrumented by
selective code-segment fuzzing to assist remote DSE to effectively
handle platform APIs (Section 6).

In the first execution, random values are assigned to symbolic
inputs, while, in the subsequent executions, the values of symbolic
inputs are generated by the Path Analysis component. Specifically,
the Code Instrumentation component first generates a PC-collection
app based on the assigned values, and sends it to theWeb Interaction
component ( 1○), which is built upon Selenium for automated testing
of web application [24]. The Web Interaction component submits
a testing request to run the app on the cloud. The runtime logs,
returned as messages, are analyzed by the Path Analysis component,
which first identifies the code segment(s) that need to be analyzed by
selective code-segment fuzzing ( 2○), and sends the code-segment(s)
to the Code Instrumentation component ( 3○) to generate one or
more seg-fuzzing apps ( 4○). The Path Analysis component then
systematically negates the symbolic path condition obtained from
the PC-collection app ( 5○), and combines it with the results from the
seg-fuzzing app(s) ( 6○) to generate new test cases ( 7○). The process
is iterated until all the paths of the smart app are explored.

5 PATH-CONDITION COLLECTION

This section presents how to collect path conditions by leveraging
code instrumentation and the readily available services (i.e., logging
and messaging) provided by IoT platforms.

5.1 Identifying Entry Methods

A smart app does not have a main method. It declares entry points
by subscribing to events. Each subscription includes a device name,
a device event, and an event handler (Line 9 in Figure 4). The
event handler methods are commonly used to take actions if the
corresponding device events are received.

Westworld analyzes all event subscriptions and finds their
event handlers, which are considered as entry methods. Each entry
method will be tested separately. It is worth noting that smart
apps in SmartThings adopt event-driven programming and do not
support multi-threading.

5.2 Identifying Symbolic Inputs

Symbolic inputs include user inputs and environment variables.
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Figure 5: System architecture.

User Inputs. Smart apps often require user inputs (i.e., app con-
figurations) to customize apps. User inputs are often used to form
predicates that control device actions, and are set as symbolic. User
inputs are declared by the keyword “input”(e.g., Lines 2–5 in Fig. 4).
Environment Variables. Smart apps frequently interact with the
outside to retrieve environment data. It would be difficult to vary
the environment on the remote platform. We resolve this issue by
identifying variables that store environment data, and set them as
symbolic inputs. They are categorized as follows.

• Device state. Each device object represents a physical de-
vice. The platform often defines interfaces to access device
information (e.g., getId() returns the device id), or accesses
the fields of a device object (e.g., switch.currentSwitch returns
the state of the switch device). The return variables of the
interfaces and the fields of a device object are set as symbolic.

• Location. The location information (such as timezone, lon-
gitude, and mode) can be accessed via the interfaces or fields
of the location object. The fields and return variables of the
interfaces are set as symbolic.

• State. Smart apps do not store data about their previous
executions; instead, they persist and retrieve data across exe-
cutions via the state object (designed as a map). We consider
the state object and all its elements as symbolic.

• Event. Events have different types of information (such as
description and value). The event fields and the return vari-
ables of the event interfaces are set as symbolic.

5.3 Instrumentation for PC Collection

5.3.1 Main Idea. We leverage code instrumentation to collect path
information and use logging and messaging services to collect
the information. The code instrumentor uses the Abstract Syntax
Tree (AST) representation of the app code to find different types of
statements for instrumentation.

First, it creates (i) a program state ϕ, which stores the values of
concrete variables and symbolic expressions of symbolic variables,
and (ii) a symbolic path condition PC, which is a quantifier-free
first-order formula over symbolic variables. Then, ϕ is initialized
to an empty map and PC to true. Second, the symbolic inputs are
initialized using the values in the test case. Third, the code for
updating ϕ and PC is inserted.

We apply lazy initialization [59] when a field of a symbolic vari-
able is accessed. For a platform API, if at least one parameter is
symbolic, we set the return variable as a temporary symbolic vari-
able (TSV), which will be taken care of by selective code-segment
fuzzing (Section 6) to identify its relation with symbolic inputs.

Definition 1. (Temporary Symbolic Variable) A temporary
symbolic variable (TSV) is the return variable of a platform API call
whose one or more parameters are symbolic.

5.3.2 Instrumentation Example. We present how to instrument the
app in Figure 4. The instrumented code is in Figure 6.
Identifying and replacing environment variables.Wefirst scan
the app code to find all environment variables; each is replaced
by a local variable at the beginning of the entry method and each
access is replaced by the variable. E.g., location.mode in Figure 4 at
Line 22 is replaced by a local variable env1 in Figure 6 at Line 12,
and accessed via env1 at Line 31.
Initializing symbolic inputs. (a) First, the initSymbolicInputs
method is inserted (Line 43), which defines a map containing the
concrete values, according to the current test case, of each symbolic
input. It accepts a list of symbolic inputs and updates their values.
(b) Then, it is called at the beginning of the entry method (Line 13).
Declaration expressions. For a declaration expression (e.g., x=y+1),
the UpdateProgramState method is inserted (Line 32). If the right
expression is symbolic, the declared variable is updated in ϕ using
the symbolic expression; otherwise the concrete value is used.
Function calls. The HandleFunCall method is inserted after a
function call. (a) If the function is user-defined, inter-procedural
analysis is applied to instrument the callee function. (b) If the func-
tion is a platform API and at least one parameter is symbolic, the
return variable is set as a TSV ; otherwise it is directly executed. Ac-
cording to our investigation, the current time is usually compared
to a time set by a user (a symbolic input); in this case, we consider
the current time as concrete. In Figure 6, t andmodeTime are stored
concretely (Lines 14-17). As timeTodayAfter is a platform API and
timeOfDay is symbolic, both startTime and terminTime (and their
fields) are stored as TSVs (Lines 18-21).
If statements. AddPC is added for each branch to update PC.
for statements. (a) If all variables in the conditional statement are
concrete, the loop is directly executed. (b) If at least one variable is
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Figure 6: Instrumentation (in green) for the app in Figure 4.

symbolic, existing approaches typically unroll the loop a fixed num-
ber of times [51, 59]. To achieve completeness, we apply selective
code-segment fuzzing (Section 6).
Switch and while statements. Handling switch (resp. while) is
similar to that of handling if (resp. for) statements.
Closure statements. Closure is a unique feature of Groovy. A
closure is a code block that can take arguments, return a value, and
be assigned to a variable. (a) It can be called as a method. We adopt
the way of handling function calls to deal with it. (b) It can be used
to iterate over all elements in a list, array, or map (e.g., Line 29 in
Figure 6). We implement a script to automatically convert a closure
to a for-loop, and apply the way of handling for-loop to handle it.

6 SELECTIVE CODE-SEGMENT FUZZING

We propose selective code-segment fuzzing, which assists remote
DSE, to effectively handle platform proprietary API calls.

6.1 Motivation and Main Idea

Consider the example in Figure 7(a). Both x (an environment vari-
able) and u (a user input) are symbolic inputs. foo is a user-defined

Figure 7: An example of selective code-segment fuzzing.

method and the return variable y is an object. As sysAPI is a plat-
form API and y is symbolic, the return variable O is a TSV. To ex-
plore the true branch of Line 5, we need to solve (u > 3) ∧ (O .m ==
8); but it is unclear which value of x makes O .m == 8.
Our Insight. Most symbolic inputs (user inputs and environment
variables, such as temperature, humidity, and home modes) of smart
apps usually have a small to moderate number of possible values.
E.g., “humidity” has 101 integer values between 0 and 100. This is
different from general programs, where their inputs usually have
an infinite or huge number of possible values.
Main Idea. Exploiting this uniqueness, we propose selective code-
segment fuzzing to handle API calls that return TSVs. Note that if
a TSV is an object, then its field—which is primitive/string type—
will be involved in path conditions. For each (field of) TSV in the
symbolic path condition, we identify the symbolic inputs it relies
on, called influential symbolic inputs (ISIs). E.g., in Figure 7(a), O is
a TSV, and relies on x, where x is an ISI (highlighted).

Based on the ISIs, we determine a code segment in the app
code, and create a seg-fuzzing app, where a for-loop is inserted
surrounding the code segment to iterate over values of the ISIs and
learn a code-segment summary expressed as the relation between
the (field of) TSV and ISIs. For example, through fuzzing we find
((x == 1) ∧ (O .m == 6))| |((x == 2) ∧ (O .m == 8)), which is
combined with the path condition (u > 3)∧(O .m == 8), and solved
together to get the values of the symbolic inputs u and x.

6.2 Learning Code-Segment Summary

To find a code-segment for inserting a for-loop, three points need
to be determined. (1) A start point is the place where an identified
ISI is first accessed among all; e.g., in Figure 7(a), the start point
for O.m is the place right before Line 3. (2) A logging point is the
place right before the conditional statement where the (field of)
TSV is involved; e.g., the place right before Line 5 in Figure 7(a) is
the logging point for O.m. (3) An end point is an immediate post-
dominator of both the start and logging points. In a control flow
graph (CFG), a blockm post-dominates a block n if every path from
the entry block to n must go throughm; and the immediate post-
dominator of a block n is the block that does not post-dominate
any other post-dominators of n [37]. The end point in Figure 7(a) is
right before Line 6. We adopt Lengauer-Tarjan algorithm [42] to
find the immediate post-dominator.
Examples. In Fig. 8, each node in the CFG represents a statement.
In Fig. 8(a), assuming node 1 is the start point and node 2 the logging
point, node 9 is the end point. Fig. 8(b) shows another example.
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Figure 8: Examples of determining insertion points.

Finally, given the example in Figure 7(a), a for-loop is inserted as
shown in Figure 7(b). The getEnvVarValues method at Line 3 is a
function for returning the collection of the values for each symbolic
input. These values are obtained from a file (that we create and
contains all possible values of each environment variable), and then
included in the getEnvVarValues method.

Selective code-segment fuzzing can also handle for statements.
If the conditional statement contains a symbolic input, we iterate
over all possible values of the symbolic input. If it contains a (field
of) TSV, we first find out the ISIs for the (field of) TSV and iterate
over the possible values of these ISIs.

The fuzzing results can be reused. We store the code segments
and summaries in a map (each variable name is replaced with an
identical name), and check it before generating a seg-fuzzing app.
Why not Fuzz PlatformAPIs?We do not directly fuzz a platform
API to learn the relation between the return variable and parameters
for the following two reasons. (1) Given an API parameter, which is
not a symbolic input, such as y at Line 3 in Figure 7(a), it is difficult
to estimate its value range. (2) If the return variable is an object, it
is difficult to record the values of all its fields, which are defined
by the closed-source platform. E.g., in Figure 7(a), we do not fuzz
sysAPI to find the relation between O and y (both are objects).
Instead, we aim to find the relation between O.m and x, where x is a
symbolic input that influences O.m (that is, x is the ISI of O.m).

6.3 Feasibility Analysis

We analyze the feasibility of selective code-segment fuzzing.
Classification.We divide symbolic inputs into three categories.

(1) Category-I : The symbolic input has a few possible values
(< 10); e.g., the location mode contains 3 values: Home, Away, and
Night. We iterate over all of them.

(2) Category-II : The symbolic input contains many but not a large
number of values (∈ [10,a], where a ≪ 232); e.g., the humidity has
101 integer values. We select a subset as follows: i) all the values
are divided into n equal parts, wherem values are randomly picked
from each part (Section 8.3 discusses how to determine n andm);
and ii) if the variable is involved in a conditional statement and
compared with a constant value, three more values (larger than,
smaller than, and equal to the constant value) are selected.

(3) Category-III : The symbolic input contains a huge or infinite
number of values, such as phone number and location id. Based
on our evaluation, none is used as an ISI; e.g., a phone number is
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Figure 10: Combining path condi-

tion and code-segment summary.

usually used as a parameter of sendMessage, and a location id is to
form a message to describe the app.
Analysis.Assume an app hasn symbolic inputs andm TSVs, where
each symbolic input Ii has µi (i ∈ [1,n]) values and each TSV Tj

has νj (j ∈ [1,m]) ISIs. Then it requires
∑m
j=1(

∏νj
i=1 µ

Tj
i ) times for

selective code-segment fuzzing to generate the required relations,
where µTji is the number of values of the i-th ISI for the TSV Tj .

According to our evaluation (Section 8.3), the maximum number
of TSVs that an app contains is no more than 3 (m ≤ 3), and the
maximum number of ISIs for a TSV is no more than 3 (νj ≤ 3).
Moreover, the ISIs have a small or moderate number of possible
values (µi ∈ [1,a], where a ≪ 232; belonging to Category-I or -II).
Thus, our selective code-segment fuzzing is feasible.

In Figure 4, e.g., we select 10 values for each user input, timeOf-
Day, endTime, and timeAgo. This app has 3 TSVs. (i) startTime.time is
influenced by timeOfDay, and it takes 10 times of loop iterations to
obtain their relation. (ii) terminTime.time is influenced by endTime
and startTime, and it takes 100 times. (iii) alreadySet is influenced
by timeAgo, and it takes 10 times. Thus, it totally takes 120 times of
loop iterations for the selective code-segment fuzzing.

7 REMOTE PATH EXPLORATION

The Path Analysis component is to i) identify TSVs from the sym-
bolic path conditions, and ii) combine symbolic path condition and
code-segment summaries to generate new test cases for path explo-
ration. Below we present two path-exploration methods: i) original
generational search [36] (we call it vanilla generational search),
which is often used in concolic testing, and ii) boosted generational
search proposed by us.

7.1 Vanilla Generational Search

We adopt the algorithm in [36] as our vanilla generational search.
The algorithm systematically negates all path constraints in each
symbolic path condition. We use Figure 9 to explain what a “gener-
ation” means. Assume the first execution exercises the path colored
in red (1 → 2 → 5 → 8 → 9 → 10). By negating each path
constraint along this path (at nodes 1, 2 and 5), we generate three
1st-generation children corresponding to the three paths colored
in blue (1 → 2 → 5 → 7 → 9 → 10, 1 → 2 → 4 → 10, and
1 → 3 → 10). By repeating this process, each first generation path
can be further expanded to generate (zero or more) 2nd-generation
children, and so on. Here, the 2nd-generation child corresponds to
the path colored in yellow (1 → 3 → 6 → 10).
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In our work, symbolic path conditions and code-segment sum-
maries are combined to generate new test cases. Let F =

∧n
i=1 fi

denote the symbolic path condition containing n path constraints.
Assumem TSVs are involved. Let Pi (i ∈ [1,m]) denote the summary
for the i-th TSV. Then F is systematically negated and combined
with (a subset of) these Pi to generate test cases.

Special attention needs to be paid when combining F and these Pj :
if a path constraint fs ∈ F is negated and the conditions involving
some TSVs Tj (j ∈ [t ,m]) appear after fs in the app code, the
summaries Pj (j ∈ [t ,m]) are not combined. By solving the formula,∧(s−1)
i=1 fi

∧
¬fs

∧(t−1)
j=1 Pj , a new test case is generated.

An Example. In Figure 10, F =
∧4
i=1 fi . f3 contains a TSV re-

turned by a platform API. For the TSV, we identify a code segment
(circled by the dashed line), and generate its summary P1. By ap-
plying vanilla generational search, we obtain four formulas: (i)∧3
i=1 fi

∧
¬f4

∧
P1, (ii)

∧2
i=1 fi

∧
¬f3

∧
P1, (iii) f1

∧
¬f2, and

(iv) ¬f1. By solving each formula, a new test case is generated.
In vanilla generational search, one testing request has to be sub-

mitted to the IoT platform to install a smart app (which is instru-
mented according to a generated test case) and explore a new path.
While it is not an issue if the analyzer and execution environment
reside together, it imposes large request-handling and communica-
tion costs on our analysis. Thus, reducing the cost is critical.

7.2 Boosted Generational Search

We propose boosted generational search that explores all paths
belonging to one generation by submitting only one testing re-
quest. E.g., in Figure 9, the three first-generation paths in blue need
three testing requests in vanilla generational search, but only one in
boosted generational search.

Note that the proposed boosted generational search is not a
new search strategy but a speed-up method for tackling the chal-
lenge of communication costs due to remote execution. We choose
generational search over other search strategies because it maxi-
mizes the number of new input tests generated from each symbolic
execution [35]. Boosted generational search, which is built upon
vanilla generational search, wraps the multiple input tests from one
symbolic execution into one remote testing request, such that the
number of testing requests can be reduced.
Algorithm. In Algorithm 1, the method BoostedSearch first in-
vokes SymExePCs to run the app with the initial inputs and collect
the symbolic path condition, which is stored in a list δ and inserted
into the working queue Q (Lines 2-4). Each element in Q is pro-
cessed by NextGenPCs to generate the symbolic path conditions
corresponding to the test cases of the next generation (Lines 5-8).

In NextGenPCs, it first generates the test cases of the next genera-
tion (Lines 11-21) and invokes SymExePCs to execute all the test cases
in one testing request to collect the corresponding symbolic path con-
ditions, which are stored in a list β (Line 23). Specifically, for each
path condition PC in the input listψ , it expands every constraint
in PC (at a position i greater than or equal to a parameter called
PC.bound initially 0 at Line 3). This is done by checking whether the
formula ζ—combined from PC and the code-segment summaries—is
satisfiable or not (Lines 13-15). If so, a next-generation test case s is
found and inserted into nextGenInputs (Lines 16-19).

All the test cases in nextGenInputs are executed in one test-
ing request, and the corresponding symbolic path conditions are
collected (Line 23). Each symbolic path condition PC’s bound is
assigned with the value of the corresponding test case s’s bound
(Lines 24-26). Finally, all PCs are returned (Line 27).

To execute all test cases of one generation through one test-
ing request, we insert a TestDriver method that wraps multiple
invocations of an entry method. Each invocation initializes the
symbolic inputs separately. We register TestDriver as an entry
method, and then remove the registration of the original one.

8 IMPLEMENTATION AND EVALUATION

8.1 Implementation

Our prototype consists of 4,418 lines of Groovy code and 2,444
lines of Java code. SmartThings provides a primitive web interface
to testing apps, e.g., generating virtual events to trigger an entry
method. We leverage the web interface to launch remote DSE. We
use the constraint solver Z3 [27] to solve symbolic path conditions.

To automate testing, we build the Web Interaction component
upon Selenium [24], which can automatically log in the platform,
install an app, and generate events (by simulating human oper-
ations). E.g., for the app in Figure 4, the component generates
bothmotion.active andmotion.inactive events to trigger the method
motionActiveHandler. To demonstrate the benefit of boosted gen-
erational search on improving the efficiency of testing smart apps,
we implement two versions of Westworld: W-van uses vanilla
generational search, andW-boost uses boosted generational search.

8.2 Experimental Settings

We evaluate Westworld in five aspects: feasibility, completeness,
precision, efficiency, and effectiveness in bug finding. Our experiments
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Figure 11: An example of injected conditions. Code related

to the injected conditions is highlighted in green.

were conducted on a machine with an Intel Core i7-7700 CPU @
3.60GHz with 16GB of RAM.
Datasets. (1) Dataset-I includes 136 official (84) and third-party (52)
apps randomly collected from the SmartThings GitHub repo [15].
Note that many apps that contain only one path are not selected.
(2) As many official and third-party apps contain a small number
of paths, we create Dataset-II including 64 hand-crafted apps with
more paths and more complex conditional statements. E.g., we pur-
posely add more branch conditions to the original official and third-
party apps. The injected conditions involve platform APIs, user
inputs, and/or environment variables to make the path exploration
more challenging. Note that it is not uncommon that users of Smart-
Things modify existing smart apps for their purposes [62, 63, 70].
Figure 11 shows an example of injected conditions, where part
of the injected code is highlighted in green. The original smart
app will turn on the light (Line 12) if motion is detected (Line 9).
Four conditions are injected to control the light on (Line 11): i)
whether the current illuminance is lower than a user input tooDark,
ii) whether the motion is detected after a period of time threshold
determine by a user input delayMins, iii) whether the status of the
lock sensor (an environment variable) is locked, and iv) whether the
current mode returned by the platform APIs, getLocation() and
getCurrentMode(), is “Home”. (3) Dataset-III includes 8 apps with
different types of bugs inserted by us, which is used, together with
Dataset-I, to demonstrate Westworld’s bug finding capability.

8.3 Feasibility

To demonstrate the feasibility of selective code-segment fuzzing,
we seek to understand the impact of symbolic inputs on the number
of fuzzing iterations. We use Dataset-I.
The number of symbolic inputs contained in each app. The
results show that 1) the average numbers of user inputs and envi-
ronment variables are 3.24 and 1.73, respectively; 2) the maximum
numbers of user inputs and environment variables are 13 and 6,
respectively; and 3) all apps have at least one user input and one
environment variable. Thus, if environment variables are not set
as symbolic but simply use the concrete values, it is unlikely to
achieve high path coverage testing of smart apps.
The number of TSVs, and the number and categories of ISIs.
We have the following findings. (a) The maximum number of TSVs

Table 1: App statistics of Dataset I and Dataset II.
# of paths in apps # of apps in Dataset-I # of apps in Dataset-II

≥ 20 16 15
[15, 20) 13 18
[10, 15) 18 13
[5, 10) 26 14
[2, 5) 63 4

that an app contains is 3. (b) The maximum number of ISIs (i.e.,
symbolic inputs that a TSV relies on) for any given TSV is 3. (c) All
the ISIs belong to Category-I and Category-II (Section 6.3); e.g., the
location id, belonging to Category-III, is only used to form amessage
about the app. We can conclude that Westworld equipped with
selective code-segment fuzzing is feasible for analyzing smart apps.
The number of ISI values selected for fuzzing. For a symbolic
input in Category-I, we iterate over all its values to achieve high
path coverage. E.g., in Figure 4, if we do not fuzz all the values of
location.mode (Line 22), some paths may be unexplored (Line 24).

For symbolic inputs in Category-II, we set n = 10 and m = 1,
i.e., one value is selected from each of ten equal parts (Section 6.3).
The code-segment summary containing ten value-pairs of TSV and
ISIs is combined with symbolic path conditions and solved by the
constraint solver. If the constraint solver cannot find satisfying
assignments given the current summary, Westworld will fuzz
using more values from the domain and update the summary until
satisfying assignments are found.

We make the choices for n andm with the following empirical
considerations: i) the time t1 used by fuzzing to obtain the code-
segment summary, ii) the time t2 used by the SMT solver to find
satisfying assignments, and iii) the maximum size of messages al-
lowed by the Smartthings Platform. Specifically, if more values
are selected for fuzzing, both t1 and t2 are increased and the code-
segment summary contained in the returned message will be too
long and truncated by the SmartThings platform (e.g., in our experi-
ments, around 76.3% messages are truncated if 20 values are fuzzed).
On the other hand, if less values are selected for fuzzing, the SMT
solver may not find satisfying assignments given the current sum-
mary, and a new fuzzing request with newly selected values will be
needed, which is expensive due to the communication cost (e.g., in
our experiments, around 11.5% code-segments need a second round
of fuzzing if only 5 values are selected). In short, the more values
are selected, the more comprehensive the code-segment summary
is; however, on the other hand, it also introduces longer time for
obtaining the summary, larger overload for the constraint solving,
and higher risks of truncating messages. Thus, the selection of the
parameter values is a trade-off between these factors.

8.4 Completeness and Precision

We use Dataset-I and Dataset-II. The lines of code (LOC) of the
apps are in the range of [43, 2058]. They are divided into several
parts based on the number of paths, as shown in Table 1. We com-
pare Westworld to three baselines: a grey-box fuzzer, a concolic
executor (without fuzzing assisted), and manual testing.
Comparison with Grey-box Fuzzer. For comparison, we devel-
oped a grey-box fuzzer. We apply the coverage-guided input gen-
eration technique used in American Fuzzy Lop (AFL) [1], and use
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Table 2: Completeness result (%) (full path coverage is attained by Westworld after a minor implementation change).

# of paths Westworld Fuzzer Concolic executor

in apps Dataset-I Dataset-II Dataset-I Dataset-II Dataset-I Dataset-II
Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg

≥ 20 100 100 100 100 100 100 69.6 22.4 43.3 46.8 14.3 20.0 72.4 28.3 45.7 44.6 12.8 22.3
[15, 20) 100 100 100 100 100 100 68.4 28.6 46.7 58.3 22.6 42.7 73.5 30.6 50.8 50.2 24.1 38.8
[10, 15) 100 100 100 100 100 100 70.4 27.3 43.3 67.2 36.4 51.0 76.4 32.3 48.3 65.5 33.2 40.3
[5, 10) 100 100 100 100 100 100 82.4 30.5 69.3 78.8 31.5 43.4 100 35.5 64.3 67.2 25.5 38.2
[2, 5) 100 100 100 100 100 100 100 37.2 74.9 86.4 42.4 62.5 100 56.2 80.2 73.2 32.0 56.4

Selenium [24] to mount fuzzing. AFL employs evolutionary algo-
rithms, which uses a feedback loop to assess how good an input
is, and retain any input that discovers a new path for generating
new inputs. For each environment input, we make sure its value is
valid; e.g., humidity is an integer between 0 and 100. The process is
terminated when the maximum time (4 hours) is reached.

Table 2 shows the results, including the number of paths, the
number of apps, and the maximum, minimum, and average path
coverage for Westworld and the fuzzer. The fuzzer cannot reach
complete path coverage for most apps. There are two main reasons.
(1) Values returned by platform API calls are not under the control
of the fuzzer, and thus the branches depending on them cannot be
all explored. (2) If a variable influenced by a user input is involved
in a condition, often it is difficult for the fuzzer to generate an
appropriate value to satisfy the condition. E.g., the platform API
getTwcConditions returns theweather data containing the outside
temperature, which is not under the control of the fuzzer, causing
a branch depending on the outside temperature to be unexplored.

Westworld achieves complete path coverage for all the official
and third-party apps under testing. There is a special case, the smart
app DoubleTapModeChange, which contains a condition invoking
isPhysical to check whether or not an event is from the physical
actuation of an IoT device. As we launch the apps from the IDE
simulator, two paths (among 16 paths) are not explored, with a path
coverage of 87.5% (= 14/16). After we consider the return value of
isPhysical as environment data, all paths are explored. For the
apps in Dataset-II (created by us with more paths and more complex
conditional statements), Westworld can successfully explore and
analyze all the paths.
Comparison with Concolic Executor.We also developed a con-
colic executor without fuzzing. The purpose is to demonstrate the
benefit of selective code-segment fuzzing in improving path con-
verge. The concolic executor considers user inputs and environment
variables as symbolic inputs (the same as Westworld). It executes
an app with given inputs, and gathers symbolic path constraints
along execution. During path exploration, when a platform API is
met, it uses the concrete values to execute the platform API. But
it does not consider the return variable of the platform API as a
TSV or apply fuzzing to analyze it to improve path coverage. As
shown in Table 2, the concolic executor cannot achieve full path
coverage for most apps. The reason is that it uses concrete values to
simplify symbolic path constraints, which sacrifices completeness
(Section 2.2). Taking the app in Figure 4 as an example, the true
branch of the second if statement (Line 24) cannot be explored by
the concolic executor. The value of alreadySet is determined by the

return variable of the platform API eventsSince, which is influ-
enced by the symbolic input timeAgo. However, as eventsSince
is closed-source, the concolic executor does not know how to set
timeAgo such that the value of the return variable of eventsSince
will make alreadySet be false. In contrast, Westworld applies se-
lective code-segment fuzzing to handle the particular code segment
(containing eventsSince and influenced by timeAgo) and can find
the appropriate value to explore both branches.

Manual Testing.We randomly selected 10 apps (2 from each cate-
gory in Table 2) and asked 5 human analysts to test them: one has
three years, two have two years, and another two have one year of
smart app development experiences. They are skilled in debugging
and are familiar with the SmartThings web interface for executing
apps. Each analyst tested 2 apps and spent 2 hours on each one.
Our studies were approved by IRB at our university.

The results show that 4 apps cannot be fully tested, and 6 apps
take more than one hour for testing. We interviewed all the analysts.
They mentioned three main problems for testing smart apps. First,
it is very troublesome to test smart apps using the SmartThings
web interface. When they modified the app configuration to change
the values of user inputs (e.g., in Figure 1) or mutated the values
of environment variables (e.g., in Figure 2), they needed to wait a
long time (more than 30s) until the app is reinstalled on the remote
cloud before executing the app. (2) Some environment variables
are defined in the source code (e.g., location.mode in Figure 4 at
Line 22). Through reading the source code, they were not sure
which variables are environment variables; more importantly, for
some environment variables, they did not knowwhich values can be
assigned for testing. E.g., two analysts knew only two values (among
three) for the locationmode; and one analyst did not know any value
for the location mode. This resulted in some paths being unexplored.
(3) They could not figure out the appropriate values for user inputs
and environment variables in order to trigger unexplored paths,
especially when some platform APIs are involved. Thus, a tool that
can automatically test smart apps is a critical need.

Precision. To evaluate the precision of our tool, we compare the
path condition of the execution path triggered by each test case to
the path condition used to generate the corresponding test case; no
path divergence occurs. Thus, all generated test cases are precise.

8.5 Efficiency

To evaluate the efficiency, we record the analysis time—the total
time used to finish automatic testing of an app—for each app in
Dataset-I. Figure 12 shows the result. In Figure 12(a), each point
represents the average analysis time for the apps in each category.
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Figure 12: Efficiency results.
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Figure 13: Breakdown of analysis time.

It shows that for the fuzzer, the analysis time grows very quickly
when the number of paths increases. W-van andW-boost are much
more efficient than the fuzzer.

In Figure 12(b), the blue diamond represents the analysis time
for each app when W-van is applied, and the red rectangle shows
that when W-boost is applied. The two black solid lines are the
polynomial trendlines of the analysis time. We can see that the
analysis time grows quickly when the number of paths increases
for W-van, while for W-boost, the time grows much slower.

We next seek to understand why W-boost performs better than
W-van. We divide the analysis time into three parts, as shown
in Figure 13: (A) data transmission time, used to send the testing
requests to the cloud and get the results back; (B) online execution
time, which includes b1) logging in the cloud, b2) locating an app,
b3) updating the app code, b4) triggering a simulator to install an
app, and b5) running an app on the cloud; and (C) offline analysis
time, used to generate test cases and instrument the app code.

We randomly select 20 apps, run each app ten times, and record
the time. (1) The average time for b1, b2, b3 and b4 is 1.74s, 6.95s,
8.42s, and 34.73s, respectively. The time cost of each is recorded
by our Web Interaction component. b1 and b2 are one-time effort,
while b3 and b4 are needed for each testing request. (2) The total
time taken by b5 and C for all testing requests of an app should be
approximately the same for W-van and W-boost. (3) The average
time forA is around 0.06s, which is very small compared to the cost
due to B. We can conclude that (i) the time cost due to b3 and b4 is
large, and (ii) W-boost is more efficient than W-van as the time
taken by b3, b4, and A is much saved—W-boost executes all test
cases of one generation through one testing request, while W-van
executes each test case through one request.

8.6 Bug Finding

Some bugs in IoT apps are hard to find manually; e.g., a division-by-
zero bugmay be triggered by a particular user input. To demonstrate
the effectiveness in bug finding, we applyWestworld to four types
of bugs: (1) division by zero, (2) array out of bound, (3) null-pointer
dereference, and (4) dead code. The first three types of bugs, once
exploited, will make smart apps crash and smart home automation
undependable. The last one will increase the app size and analysis
cost if static analysis is applied. For a division-by-zero bug, when
a division formula (e.g., a/b) is found during path exploration and

Figure 14: Apps that contain null-pointer dereference bugs.

the denominator is represented as a symbolic expression, the path
constraint, b == 0, is added to each path condition when it is to
be resolved. A division-by-zero bug is found if the path condition
is resolvable. This is similar for other bugs with different path
constraints added. Due to space limit, we omit it here.

In Dataset-I, we found 4 apps with null-pointer dereference bugs,
which are caused by the “enum” and “required false” inputs. If the
value for such a variable is not specified, its value will be set to null
by the platform. When the variable is used to invoke a function, a
null pointer exception is triggered.

Figure 14 shows two smart apps containing the bug. (1) In the
GarageDoorOpen-TurnOnLight app, if a user does not specify a value
for the input threshold, when the toInteger function is called, a null
pointer exception is triggered. (2) In the HoneyImHome app, the
return variable s of the platform API getSunriseAndSunset is a
map. If the value for the input zipCode is not specified, the two fields
of s—sunrise and sunset—are null. As a result, riseTime is null, and
the access to a field of riseTime will trigger a null pointer exception.

We further createDataset-III containing eight apps with different
bugs inserted, as shown in Table 3: (1) two apps contain division
by zero bugs, (2) four are inserted with dead code (due to infeasible
paths), (3) one contains an array out of bound bug, and (4) one
contains a null-pointer dereference bug. The evaluation shows that
Westworld can successfully find all the bugs.
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Table 3: Eight inserted bugs.

Bugs # of apps Description
Division by 1 A user input is converted to another value by a method and then used as a denominator.

zero 1 A field of the state object (storing data of previous executions) is not initialized but used as a denominator.
Dead code 4 Two path conditions are contradicted with each other. No solution can be found by the solver.
Array out of 1 The platform API getChildApps returns a list of child apps associated with this smart app.

bound An index used to retrieve a child app is larger than the length of the list.
Null-pointer 1 A field of the return variable weather of the platform API getTwcConditions is accessed.
dereference The variable weather, which contains the weather data, however, may be null.

9 RELATEDWORK

Symbolic Execution. Symbolic execution has been widely applied
to test applications like Windows programs [34, 74, 82], Linux pro-
grams [4, 10–12, 23, 74], Java programs [5, 8, 51, 59], and firmware [14,
26, 38, 68, 78, 85]. We propose remote dynamic symbolic execution
to test smart apps running in a remote execution environment.

Dynamic Symbolic Execution (DSE). It performs symbolic ex-
ecution dynamically [11, 12, 23, 34, 60]. Although DSE recovers
from imprecision caused by API calls, it sacrifices completeness. To
resolve it, we propose selective code-segment fuzzing that (1) identi-
fies part of the app code that causes missing execution paths, and
(2) fuzzes only this part of code to complement the path coverage.
Fuzzing CombinedWith Dynamic Symbolic Execution.A set
of approaches have been proposed to combine fuzzing and DSE.
Most of them are fuzzing-centric, in which the path exploration
is offloaded to the fuzzer, and DSE is selectively used to assist
fuzzing [7, 19, 45, 53, 57, 58, 67, 75, 77, 81, 83, 84]. E.g., Driller [67]
uses DSE to make the fuzzer “revive”. It aims to find bugs hidden
deep, but not complete path exploration. DeepFuzz [7] uses a similar
idea. DigFuzz [84] and MDPC [75] design a path prioritization
model to quantify each path’s difficulty and prioritize them for DSE.
QSYM [77] loosens precision of DSE for better performance.

Compared to fuzzing-centric approaches such as Driller, our
method is symbolic execution-centric.Wemade this SE-centric choice
due to the unique challenge: the communication cost between the
remote cloud and local analyzer, and request handling time can-
not be omitted. Thus, each testing request is expensive. Given a
path like (temp<75 && temp>68), Driller cannot avoid generating a
lot of testing requests that repetitively take the same path, while
symbolic execution is good at this. Plus, our boosted generational
search further enhances the vanilla generational search by testing a
whole generation of inputs in one request to improve the efficiency.
Analysis of IoTApplications.A lot of researches have beenmade
on analyzing IoT or mobile apps [2, 15–17, 20, 21, 29, 30, 39, 43, 44,
46–48, 61, 73, 76, 79, 80]. FlowFence enforces sensitive data flow
control via opacified computation [29]. HAWatcher [30] extracts
semantics from IoT apps for anomaly detection. Centaur [51] also
needs to handle the difficulty due to the decoupled concrete execu-
tion and symbolic execution; specifically, it migrates the heap from
an Android system to the symbolic executor. Unlike prior work,
Westworld is the first system that enables DSE of IoT apps.

10 DISCUSSION AND LIMITATIONS

To demonstrate bug finding capability, Westworld is applied to
four types of bugs that result in crashes. Besides these, it can

also be applied to some sophisticated vulnerabilities, e.g., cross-
app interference (CAI) bugs [21, 22]. A set of work uses model
checking [17, 18, 56], or combines static analysis and NLP tech-
niques [28, 72], to detect CAI bugs. HomeGuard is the first work
that leverages classic symbolic execution and SMT solving for find-
ing CAI bugs [22]. To handle platform APIs, it uses manual function
modeling and thus causes imprecision. Westworld is the first DSE
system for analyzing IoT apps and attains precise analysis.

The proposed remote DSE is enabled by multiple ideas, such as
leveraging logging and messaging to collect path conditions, con-
verting environment data to symbolic inputs, boosted generational
search, and selective code-segment fuzzing. Extending remote DSE
to analyze other types of code running on remote proprietary plat-
forms is an interesting research direction.
Limitations. Westworld uses a constraint solver to generate
test cases, which can scale to complex constraints [6] but also has
limitations [25, 41]. Our evaluation showsWestworld can achieve
completeness for the apps under testing, mainly because existing
IoT apps usually have a small number of paths. We do not claim
Westworld guarantees completeness in general.

Selective code-segment fuzzing works well for analyzing smart
apps, as symbolic variables (such as temperature, home mode, and
switch state) usually do not have many discrete values. For general
programs which often have unbounded possible concrete values
for symbolic variables, however, the method does not work.

11 CONCLUSION

We have presented the first system that enables dynamic symbolic
execution (DSE) of smart apps. As most IoT platforms are cloud-
based proprietary execution environment, various challenges arise.
Exploiting the uniqueness of environment inputs, selective code-
segment fuzzing was proposed to assist DSE. Boosted generational
search was designed to accelerate the analysis. We implemented
Westworld, which performs fuzzing-assisted DSE-centric analysis
of smart apps. The evaluation shows that Westworld is effective
and efficient in path exploration and bug finding.
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