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ABSTRACT

The augmented reality (AR) Metaverse environment com-
bines the physical and virtual world together. Privacy is a
major concern in AR since the cameras use to capture the
physical world can also capture other images that may poten-
tially violate user or by-stander privacy. Advances in deep
learning to process images and videos have exacerbated such
privacy risks. This paper presents a new technique to pro-
tect privacy in AR systems by combining the idea of visual
saliency together with privacy-sensitive object detection. We
show that our technique is able to provide additional con-
text to a given image to better balance between privacy and
overall usability of the system.

CCS CONCEPTS

• Security and privacy→ Human and societal aspects
of security and privacy; • Computing methodologies
→ Arti�cial intelligence.
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1 INTRODUCTION

Augmented Reality (AR) is a unique component of the meta-
verse that combines the physical world together with the
virtual world [17, 21]. The commonly available AR systems
are mobile AR (MAR) [5] in the form of a head-mounted
device like the HoloLens, or a portable device in the form
of a tablet or smartphone. This form of AR is expected to
continue to grow in the coming years [11, 27].
A typical AR system consists of a camera that captures

the physical world and a display that allows the projection
of virtual objects overlaid on top of the physical objects.
Algorithms are deployed for 3D scene geometry estimation,
scene semantics understanding, and virtual scene rendering.
While the data pipeling can be implemented entirely on
the AR device, most AR systems rely on the computational
resources of a backend cloud service to perform many of the
operations.
The privacy implications of AR systems is a major con-

cern [1, 4, 8, 9]. In particular, users are concerned that the
camera (which is an integral part of an AR system) may cap-
ture information about the user or bystanders, which may
reveal private information [6, 12, 29].

1.1 Current privacy protection and its
limitations

A key privacy technique used to protect privacy in AR sys-
tems [14, 15, 34], and earlier smartphone camera apps [2, 22,
30] is obfuscation. This is where speci�c objects (e.g. faces,
license plates, computer screens, etc.), or regions (e.g. entire
background) are �rst identi�ed, and then distorted so as to
make them unintelligible (e.g. blurring the license plate) to
the viewer of the video recordings [25]. In this paper, we
will use the general term “blurring" to refer to this distortion
process, though in practice, other methods such as blacked
outs can also be used. The typical process of obfuscation is
as following. The system developer will �rst identify a list
of objects/regions that are privacy sensitive and then design
computer vision algorithms to automatically identify these
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Figure 1: Example of limitations of existing privacy
scheme. Green box indicates correct application of pri-
vacy rules, and red box indicates incorrect application.
Faces are intentionally masked for privacy reasons.

objects in the video and then blur then out. End users may
be able to con�gure the system to selectively blur certain
objects (e.g. blur logos but not license plates), depending on
the application requirements.
A limitation with the current approach of obfuscation is

that the concept of privacy cannot be easily reduced to a set
of objects or simple rules. We illustrate this using two im-
ages extracted from Youtube to represent what an AR system
might capture in Figure 1. The example on the left shows
the result of a common privacy rule to blur third-party faces
that is supposed to protect the privacy of bystanders. It is
clear from the context that the third-party face shown on
the smartphone (red bounding box) should not be blurred,
since it is apparent the user wants to show this image to the
camera. The image on the right illustrates the result of an-
other common privacy rule to blur all text information. This
type of rule is used to prevent the camera from potentially
capturing documents on the background, diplomas hanging
on the wall, emails on computer screens, and so on (green
bounding box). However, from the context of the image, the
area bounded by the red box should not have been blurred,
since the user is intentionally showing it to the camera.

1.2 Our contributions

Our approach to this problem combinesmodern deep learning-
based saliency prediction and object detection algorithms.
Di�erent from previous methods that detect a list of pre-
de�ned privacy-sensitive objects, our method only detect
a single class of privacy regions. We utilize a key concept
called Visual Saliency [38], meaning visually distinctive ob-
jects or regions in an image, with a prior knowledge that
privacy regions are less likely to be salient and vice versa.
This mutually exclusive relationship makes it possible to de-
tect privacy-sensitive objects while considering their speci�c
context. We �rst formulate a two-stage method that re�nes
results from a privacy object detector using saliency scores.
Then we propose a hybrid model that combines object de-
tector and saliency detector together and can be trained in
an end-to-end way.

To validate the proposed methods, we collected a dataset
of video call scenario and annotated the privacy sensitive
objects in the images of the dataset. Then, the proposed
methods are tested on the dataset along with standard ob-
ject detection algorithms. The e�ectiveness of the proposed
approach is clearly validated by the experimental results.

2 RELATED WORK

Security and privacy are important concerns ofmetaverse [10,
39]. The privacy of AR systems are of particular concern
because of the camera used to capture the physical surround-
ings can be combined with machine learning to extract pri-
vacy sensitive data [23, 35, 37, 40]. Work by [18] was among
the �rst to explore the potential for an adversary to hide
malicious code in an AR app to extract privacy sensitive
information from the camera feed.
Closely related to the AR privacy are research on visual

privacy camera systems such as those found on smart glasses,
smartphones, and body cameras. Research on visual privacy
protection techniques‘to detect and blur speci�c objects [3,
24, 25], as well as gestures and other mechanisms to express
privacy preferences [16, 36] can be applied to AR systems as
well. This has led to research in OS support for AR apps [7, 14,
19, 26] to support these techniques within the requirements
of AR systems.
Object detection is one of the fundamental tasks in com-

puter vision. The goal is to recognize and locate prede�ned
objects in an image. There are two major categories of deep
learning based object detection methods, one-stage meth-
ods and two-stage methods. YOLO [31] is one of the most
representative one-stage methods. It frames object detection
as a regression problem, and predicts the bounding boxes
and class probabilities directly from full images without post-
processing. YOLO is extremely fast due to its uni�ed architec-
ture. YOLOv3 [32] improves over YOLO by predicting across
3 di�erent scales. This makes it more accurate to detect ob-
jects of di�erent sizes. Faster R-CNN [33], di�erent from
YOLO, needs to generate potential bounding boxes �rst and
then classify these proposed boxes. The results are re�ned
with post-processing. Faster R-CNN represents two-stage
methods that are accurate but slow and hard to optimize.
Saliency detection has di�erent motivation compared to

generic object detection. Salient object detection aims to
�nd most visually distinctive objects or regions in an image.
Whether one object is salient depends on its context. For
example, the face of a person could be a salient one when
he/she is talking to another one in a video conference, but
not when the video is in presentation mode. Saliency detec-
tion can be implemented using deep neural networks with
pixel-level classi�cation losses. A recent survey can be found
in [38]. Among many salient object or saliency detection al-
gorithms, two of them are mostly related to our study: Hou et
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al. [13] builds upon VGGNet, and fuses classi�cation losses at
6 di�erent scales. Qin et al. [28] proposes a new architecture
named U2-Net that does not rely on pretrained backbones.
It adopts a two-level nested U-structure and novel Resid-
ual U-blocks. Saliency detection has an inborn connection
with privacy detection. It is less likely that a salient region
contains privacy-sensitive objects.

3 SALIENCY-AWARE PRIVACY
DETECTION AND PROTECTION

One key step in protecting privacy is to detect privacy re-
gions in a camera-captured image. This privacy detection, or
more generally image detection, is one of the fundamental
tasks in computer vision. Deep learning based methods have
greatly improved the detection accuracy on benchmarks like
MS-COCO [20]. Besides their good performance, a signi�-
cant advantage over conventional computer vision methods
is that they can be easily transferred to new datasets. For
example, we can take a YOLOv3 model for generic objection
detection pretrained on MS-COCO and �ne-tuned it on the
privacy protection images for privacy detection. The power-
ful representation ability of deep learning enables context-
aware privacy detection where the the spatial information
of surroundings to the persons and temporal information of
current activities are considered.

Usually, saliency regions in an image are less likely to be
privacy sensitive. With this prior knowledge, we can use a
saliency detection model to re�ne the results from privacy
detector. Depending on the way to use this information, we
investigate two types of privacy detection approaches: a
two-stage method and an end-to-end one.

3.1 Two-stage method

In a two-stage method, the privacy region detector and
saliency detector are trained independently. To make a pre-
diction on an image, the privacy detector �rst detects can-
didate privacy regions. These candidates are then �ltered
based on the saliency detection results. For the �rst stage,
we experimented with two representative image detectors,
YOLOv3 [32] and Faster-RCNN [33], as the privacy region
detector, and selected the Deeply Supervised Salient Object

Detection with Short Connections method [28] described in
the related work section as the saliency detector. The detailed
procedure of saliency �ltering is outlined in the evaluation
section.

3.2 End-to-end method

A potential drawback of the previous two-stage method is
that the generation of privacy regions does not consider the
saliency information, which can be sub-optimal. Rather than
manually thresholding with saliency map, an alternative way

Figure 2: Architecture of hybrid YOLOv3+* 2-Net. The
lower subnet is the * 2-Net [28] for saliency detection
and the upper subnet is the YOLOv3 [32] for privacy ob-
ject detection. Residual connections andmodule mean-
ings are omitted for clarity. Please refer to original
paper for details.

is to take the saliency map as additional features to the pri-
vacy region detector and let model automatically learn the
relationship between privacy region and saliency region. Fig-
ure 2 shows the architecture of the end-to-end method using
YOLOv3 as privacy region detector and* 2-Net as saliency
detector. YOLOv3 and U2-Net takes the same original image
as the network input. Then the output saliency map from U2-
Net are viewed as additional feature presentations and added
to the latent feature of YOLOv3 before generating privacy
regions. Since YOLOv3 works at three di�erent resolutions,
the saliency map is rescaled to �t the corresponding ones. In
this hybrid model, the generation of privacy regions not only
relies on object semantics but also on contextual saliency.

4 EVALUATION

4.1 Data collection

We created our own dataset for evaluation since there are
no AR datasets on privacy. Since there are many potential
AR applications, no single dataset is likely to capture all
scenarios. Instead, we focused on a common scenario where
the AR device is used in a conversation type environment, i.e.
a user wearing a head-mounted device talking to someone
else, or a user having a teleconference using an AR enabled
device. Such a scenario will capture objects of interest that
are part of the conversation, as well as objects that are may
potentially be privacy sensitive.

To create our dataset, we collect YouTube videos that are
about video call, since this is similar to what an AR device
will capture, and extract a total of 1,000 images from them.
In each image, the privacy regions, e.g., containing faces
and text depending on the context, are manually labeled.
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We name this dataset as YouTube Dataset. Figure 3 shows
exemplar images and their ground-truth notations of privacy
regions.

Figure 3: Exemplar images with notations from the
YouTube Dataset. Eye regions are blocked on purpose
for visualization (same for Figure 3 as well).

4.2 Experiment details

We follow the standard evaluation procedure and split the
YouTube Dataset by 80% for training and 20% for testing.
Each model is trained on the training set, and then evaluated
on the test set using mean average precision (mAP). This
metric measures how well the predicted privacy regions are
consistent with the ground-truth privacy regions.

4.2.1 YOLOv3 with Manual Thresholding (MT) using saliency.

A YOLOv3 model pretrained on MS-COCO [20] is �ne-tuned
on the training images of the collected dataset to detect
privacy regions. Meanwhile, a pretrained saliency detector
is �ne-tuned on the training images to detect salient regions.
In the Manual Thresholding (MT) step, the predicted privacy
regions from the YOLOv3model are re�ned with the saliency
map. If the average saliency score of a detected privacy region
is above 0.5, it will be rejected and not considered as a privacy
region.

4.2.2 Faster R-CNNwithManual Thresholding using Saliency.

This model replaces the YOLOv3 in previous method with
the pretrained Faster R-CNN model. It adopts the same pro-
cedure to re�ne detected privacy regions with saliency score
thresholding.

4.2.3 Hybrid YOLOv3+* 2-Net. The hybrid model combines
YOLOv3 and* 2-Net into one integrated model and train it in
an end-to-end way. The saliency map from*

2-Net are input
as additional feature to the YOLOv3 model. The whole model
is trained on the training images for 100 epochs. To further
analyze the e�ect of saliency map, we also add another step
of manual threshold as we do in previous methods.

4.3 Quantitative results

The evaluation results are listed in Table 1. As can be seen
from the table, using saliency in visual privacy detection
clearly improves the mAP compared to not using saliency.
YOLOv3 performs comparable to Faster R-CNN, though its
mAP is slightly higher. Hybrid YOLOv3+U2-Net improves
over YOLOv3 only, showing the e�ect of combining saliency
into privacy detection procedure. An interesting point is that
the post-processing of manually thresholding of saliency
works better than end-to-end training. The reasons may be
that our current dataset is not large enough to implicitly
learn the mutual exclusive relationship between privacy re-
gion and saliency region. This can be improved by shifting
the region classi�cation probability of the privacy detector,
rather than using saliency map as latent feature only. We
leave this for future work.

Table 1: Comparison of di�erent privacy detection
methods on the test set. Note: MT is short for “manual
threshold", E2D for “end to end".

Object Saliency Combination mAP
detector detector strategy (%)

Faster R-CNN None N/A 25.5

Faster R-CNN *
2-Net MT 33.6

YOLOv3 None N/A 27.4

YOLOv3 *
2-Net MT 35.1

YOLOv3+* 2-Net *
2-Net E2E 29.8

YOLOv3+* 2-Net *
2-Net E2E + MT 34.7

4.4 Qualitative results

In this section, we provide some qualitative results. Figure
4 shows two test images and their privacy region detection
results. As can been seen, the saliency map indicates the
most prominent objects in the images, i.e., persons. The hy-
brid model detects privacy regions in the images, but there
are false positive results. After manually thresholding with
saliency map, these false positive results are removed.

5 CONCLUSION AND FUTUREWORK

In this paper, we present the deep learning approach to pro-
tect privacy in camera-based critical applications. We point
out the limitations of current approaches in improper prede-
termined privacy-sensitive objects and under-exploitation of
context of privacy situation. We utilize the mutual exclusive
relationship beween privacy regions and saliency regions,
and propose a deep learning-based privacy-sensitive object
detection approach. Our experiments on the collected video
call dataset demonstrate its e�ectiveness.

4



Saliency-Aware Privacy Protection in Augmented Reality Systems MetaSys ’23, June 18–22, 2023, Helsinki, Finland

Input image Saliency map

Result of hybrid model Result of hybrid model w/ MT

Input image Saliency map

Result of hybrid model Result of hybrid model w/ MT

Figure 4: Privacy region detection results with hybrid
model and manual thresholding.

Our results are very preliminary and there are several fu-
ture works to explore. Currently, end-to-end training is not as
e�ective as manually thresholding. It is worthwhile to study
how to bring saliency map into the decision procedure of the
privacy object detector. For example, the classi�cation score
as privacy object may be shifted based on the saliency score.
In video data, the temporal information from adjacent frames
could be used to better infer current activates. This is critical
as whether an object is privacy sensitivity is highly related
to the person’s intention. Moreover, more e�ective ways,
such as earlier feature fusion, for integrating the saliency
information into privacy sensitivity detection can potentially
improve the detection accuracy. Finally, another direction is
to inpaint privacy-sensitive regions to make it natural rather
than simply obfuscating the regions.
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