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Abstract—The rapid proliferation of Internet-of-Things (IoT)

has advanced the development of smart environments. By

installing smart apps on IoT platforms, users can integrate IoT

devices for convenient automation. As smart apps are exposed

to a myriad of sensitive data from devices, one severe concern

is about the privacy of these digitally augmented spaces. The

recent work SAINT [1] has been proposed to detect sensitive

data flows in individual smart apps using taint analysis.

But it has high false positives and false negatives due to

inappropriate consideration of taint seeds and taint sinks.

One important security issue ignored by existing work

is that the IoT platform supports parent-child smart apps.

Their ability to communicate, however, has a negative effect

on security. We call the parent-child smart apps colluding
smart apps. Unfortunately, no tool exists to detect smart

app collusion. We propose PDColA, which addresses the

limitations of SAINT, and more importantly, can detect privacy

leakages by colluding smart apps. The evaluation results

show that PDColA achieves higher accuracies than SAINT in

detecting privacy leakages by individual smart apps, and is

effective to detect privacy leakages by colluding smart apps.

I. Introduction

The rapid proliferation of Internet-of-Things (IoT) devices

has advanced the development of smart homes and factories.

The IoT market is expected to surpass $1.38 trillion by 2026 [2].

Popular IoT platforms include Samsung SmartThings, Amazon

Alexa, Google Home, and Apple HomeKit.

By installing automation apps (also called smart apps) on
IoT platforms, users can integrate heterogeneous IoT devices

for convenient automation (e.g., turn on lights when the

owner returns home). As smart apps are exposed to a myriad

of sensitive data from IoT devices (e.g., device state like

locked/unlocked) and user information (e.g., away/at home),

one severe concern is about the privacy of these digitally

augmented spaces.

IoT platforms currently provide coarse-grained controls for

regulating whether a smart app can access private information,

and provide little insight into how private information is

actually used. For example, if a user allows a smart app to

access a lock device’s state, she has no idea whether or not

the app will send the information to attackers. As a result,

users must blindly trust that apps will properly handle their

private data. Thus, what are urgently needed are analysis

tools and techniques targeting IoT platforms that can identify

privacy concerns in smart apps.

Taint analysis is a widely used technique for sensitive data

tracking [3]. Many sensitive data tracking tools have been

designed for mobile apps and other domains [4]–[10], which

however are inadequate for analyzing smart apps [1], [11],

[12]. The recent work SAINT [1] has been proposed to detect

sensitive data flows in smart apps using static taint analysis.

But taint seeds and taint sinks considered by SAINT are not

appropriate, causing high false positives and false negatives,

which are addressed by our work.

One important security issue, however, ignored by ex-

isting work is that the IoT platform supports parent-child
smart apps [13]–[16]. The parent-child relationship is useful

when a user wants to have multiple automations that act

independently on separate IoT devices. In such a design,

a parent app may have many child apps, and a child app

has only one parent. More importantly, parents and children

can communicate with each other. However, their ability to

communicate has a negative effect on security and privacy

as a smart app can send sensitive data to another smart app

and eventually leak out. We call the parent-child smart apps

colluding smart apps. Unfortunately, there are no effective

tools to detect smart app collusion. Note that SAINT can only

detect privacy leakages by individual smart apps.

We propose PDColA, which addresses the limitations of

SAINT, and more importantly, extends the existing approach

to detect privacy leakages by colluding smart apps. To make

the work concrete, we showcase the idea and technique on

SmartThings, one of the most popular IoT device integration

platforms. We evaluate PDColA with different experiments

and compare it to SAINT. Our experiment results show that

PDColA achieves higher accuracies than SAINT in detecting

privacy leakages by individual smart apps, and is effective to

detect privacy leakages by colluding smart apps.

We made the following contributions.

• We identify one type of colluding smart apps, i.e., parent-
child smart apps, whose ability to communicate has a

negative effect on the security and privacy of the IoT

ecosystem.

• Being the first in the literature, we present a system PD-

ColA, extended from the existing work SAINT (focusing

on detecting privacy leakages by individual smart app)

to detect privacy leakages by colluding smart apps.

• PDColA identifies and addresses the limitations of the

existing work SAINT.

• We have implemented and evaluated PDColA. It achieves

higher accuracies than SAINT in detecting privacy

leakages by individual smart apps, and is effective to

detect privacy leakages by colluding smart apps.
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Fig. 1: The architecture of SmartThings IoT platform.

II. Background

A. SmartThings IoT Platforms
SmartThings is a proprietary platform owned by Samsung.

It provides a software stack used to develop applications that

control IoT devices, and includes four main components, as

shown in Figure 1: hub, smart apps, smart devices, and cloud.
The hub

1
bridges the communication between connected

physical devices and the cloud backend. Smart apps are

developed in Groovy (a dynamic, object-oriented language)
2

and run in the cloud backend.

SmartThings allows a user to specify devices and user

inputs required for an app at installation. (1) User inputs

are used to complete the app logic; e.g., a user input can

select a device or set the time to turn on a light. (2) Devices

have capabilities, consisting of events and actions. Actions
represent how to control devices, and events are triggered

when device states change. Apps subscribe to device events

or other pre-defined events. When device states change, an

event is triggered and the corresponding event handler of the

subscribing app is invoked to take actions.

1 preferences {

2 input " contact1 " , " capability . contactSensor "

3 input "lock1" , " capability . lock"

4 }

5

6 def installed () {

7 subscribe ( contact1 , " contact " , eventHandler)

8 }

9

10 def eventHandler(evt ) {

11 if ( evt . value == "closed " ) {

12 log .debug "door locked"

13 lock1 . lock ()

14 }

15 }

Listing 1: A smart app.

Listing 1 shows a smart app which locks a door. It first

asks a user to select two devices: one is contact1 with

the contactSensor capability, and another lock1 with the

lock capability (Line 2 and 3). Then, the app subscribes

to the contact event of the contact1 device, and registers

the eventHandler method (Line 6). When the device

1
More and more (WiFi-based) IoT devices do not require a hub to work.

2
While SmartThings has recently started to support other languages, apps

in Groovy are still the most popular and sophisticated ones.

contact1’s state changes, the contact event is triggered, which
leads to the invocation of the eventHandler method (Line

8) to lock the device lock1 if the contact event’s current value
is “closed” (Line 9-11).

B. Taint Analysis

Taint analysis is a widely used technique for sensitive data

tracking [3], [17]. It tracks some selected data called taint seeds
(e.g., data originated from untrusted sources), propagates them

along program execution paths according to a customized

policy called taint propagation policy, and then checks the

taint status at certain critical locations called taint sinks.
Many sensitive data tracking tools have been designed for

mobile apps and other domains [4]–[10], which however are

inadequate for analyzing IoT apps [1], [11], [12]. The recent

work SAINT [1] has been proposed to detect sensitive data

flows in IoT apps using static taint analysis, which propagates

taint values following all possible paths with no need for

concrete execution [5], [7], [10].

III. Approach

We first present the limitations of SAINT and how PDColA

addresses such limitations (Section III-A), and then discuss

how we extend the techniques of SAINT to analyze colluding

smart apps (Section III-B). Finally, a risk ranking model

is proposed to evaluate the risk levels of detected privacy

leakages (Section III-C).

A. Detecting Leakages by A Single Smart App

Similar to SAINT [1], we first convert the source code of

a smart app to an intermediate representation (IR), which is

used to construct an app’s entry points, event handlers, and

call graphs. Using such information, we model the lifecycle

of an app and perform static taint analysis. For the details,

please refer to SAINT [1].

A smart app does not have a main method. It declares entry

points by subscribing to events. Each subscription includes

a device name, an event, and an event handler (e.g., Line

7 in Listing 1). The event handler methods are commonly

used to take device actions. A smart app may define multiple

entry points by subscribing to multiple events. When the

state of a device changes, an event is triggered and the

corresponding event handler of the subscribing app is invoked

to take actions. PDColA analyzes all subscriptions and finds

their event handlers, which are considered as entry methods.

Each entry method will be analyzed separately.

Below we mainly present the limitations of SAINT and

how PDColA addresses them.

1) Taint Seeds: We consider user inputs and environment

variables as taint seeds, which are explained as follows.

User Inputs. Smart apps often require user inputs (i.e., app

configurations) to customize apps. User inputs may contain

personally identifiable data that can be used to profile user

behavior. For example, at a particular time specified by the

owner, the air conditioner is turn on to wait for the owner



back home; then, the particular time can be used to learn when

the owner usually return back home. User inputs are declared

by the keyword “input” (e.g., Lines 2 and 3 in Listing 1).

Environment Variables. Smart apps frequently interact

with outside to retrieve environment data, such as location

(whether a user is at home) and device status (e.g., whether a

door is locked), which may be sensitive. We divide environ-

ment variables into four categories as shown below.

• Device state and information. When a user installs a

smart app, she usually selects IoT devices (e.g., contact-
Sensor at Line 2 in Listing 1). An IoT device is represented

as a device object. Smart apps can interact with device

objects to obtain device information. The SmartThings

platform defines interfaces to access device information

(e.g., getId() returns the device id). Moreover, smart

apps can also directly access the fields of a device object

to get device states (e.g., switch.currentSwitch returns the

state of the switch device). The return variables of the

interfaces and the fields of a device object are considered

as taint seeds.

• Location. A location represents a user’s geolocation or

geographical location. The location information (such as

timezone, longitude, and mode) can be accessed through

either the interfaces or fields of the location object. The

fields and return variables of the interfaces are considered

as taint seeds.

• State. Smart apps do not store data about their previous

executions; instead, they persist and retrieve data across

executions via the state object (designed as a map). For

example, a smart app may persist a “counter” to keep

track of how many times a door is locked and store it

in state.counter. We consider the state object and all its

elements as taint seeds.

• Event. An event can contain different types of informa-

tion, which may indicate the state of the device who

generates the corresponding event. The event fields and

the return variables of the event interfaces are set as

taint seeds.

SAINT vs. PDColA. SAINT does not consider event

information as taint seeds, while PDColA does. The reason we

consider event information is that an event object may contain

sensitive data that can be used to learn the status of a smart

home or profile user behavior. E.g., by combining event.value
(the value of this event) and event.date (the time when this

event is created), attackers can profile user behavior—the

owner may be back home when a presence event with the

value of present is created, and after collecting this event for

a period of time, the user behavior can be learned.

2) Taint Sinks: We consider two types of taint sinks.

Internet. Smart apps may send data to external services

through HTTP interfaces (e.g., httpGet(), httpPost(),
and httpPut(), etc.).

Message services. Smart apps use messaging

APIs to deliver push notifications to users

(e.g., sendNotificationToContact() and

sendNotification()), and to send SMS messages

to designated recipients (e.g., sendSms() and

sendSmsMessage()). At each taint sink, for data

to be sent outside, PDColA checks whether it is tainted and,

if so, logs the data’s taint label and destination.

SAINT vs. PDColA. We analyzed all HTTP interfaces

and messaging APIs in the SmartThing API documentation,

and exclude three messaging APIs from being considered as

taint sinks, which are considered by SAINT. The first one is

sendNotificationEvent(); it only displays a notifi-

cation “Hello Home” but does not send out any notification. An-

other two are sendPush() and sendPushMessage(),
which only send messages to the user’s mobile device.

B. Detecting Leakages by Parent-Child Apps

The type of colluding smart apps we focus on in this work

is parent-child smart apps [13]–[16]. There may exist other

types of colluding smart apps which will be explored as future

work (Section VI).

The parent-child relationship is useful when a user wants to

have automations that act independently on separate devices.

A parent app may have many children; a child has only one

parent. To create such a relationship, the parent app uses

the “app” input to specify what app is a child. The child

app should specify the “parent” option in its definition to

specify what app should serve as the parent. Parents and

children can communicate with each other. A parent can

invoke the API getChildApps() to get all its children,

or findChildAppByName() to get a particular child if

the child’s name is known, and then invoke a public method

defined in the child. On the other hand, a child can get a

reference to its parent by invoking getParent() and call

a public method in the parent.

An Example. Figure 2 shows an example, where smartblock-
manager is a parent app and has three child apps, smartblock-
chat-sender, smartblock-notifier, and smartblock-linker (Lines

2-4 in Figure 2(a)).

In Figure 2(b), the child app smartblock-chat-sender
sends the username (Line 17) and location mode

(Line 16 and Lines 8-10) to a URL returned by

app.getParent().getServerURL() (Lines 14-15),

where app.getParent() returns the reference of the

parent app, and getServerURL() is a public method

defined in the parent app and returns the server URL (Line 8

in Figure 2(a)).

In Figure 2(c), the child app smartblock-notifier also sends

the username (Line 17) and redstone signal strength (the value

of an event; Line 16 and Lines 8-9) to the same URL. Note

that as SAINT does not consider event information as taint

seeds, the privacy leakage of redstone signal strength will be

missed, causing false negative.



1 section {

2 app(appName:"SmartBlock Chat Sender")

3 app(appName:"SmartBlock Notifier")

4 app(appName:"SmartBlock Linker")

5 }

6

7 public getServerURL() {

8 return "http :// ${ serverIp }:3333 "

9 }

(a) Parent app smartblock-manager.

1 definition (name: "SmartBlock Chat Sender")

2

3 def initialize () {

4 subscribe ( location , modeChangeHandler)

5 }

6

7 def modeChangeHandler(evt) {

8 def mode = evt.value

9 def message = "mode changed to: \"${

mode}\""

10 chatMessageToMC(message)

11 }

12

13 def chatMessageToMC(message) {

14 def parent = app.getParent ()

15 def url = "${parent .getServerURL() }/ "

16 url += "chat?message=${message}"

17 url += "&username=${username}"

18 httpPost ( url ) {...}

19 }

(b) Child app smartblock-chat-sender.

1 definition (name: "SmartBlock Notifier " )

2

3 def initialize () {

4 subscribe (smartBlock, "

redstoneSignalStrength " ,

redstoneSignalStrengthHandler )

5 }

6

7 def redstoneSignalStrengthHandler ( evt ) {

8 def value = evt . value

9 def message = "redstone signal is ${

value } "

10 chatMessageToMC(message)

11 }

12

13 def chatMessageToMC(message) {

14 def parent = app.getParent ()

15 def url = "${parent .getServerURL() }/ "

16 url += "chat?message=${message}"

17 url += "&username=${username}"

18 httpPost ( url ) {...}

19 }

(c) Child app smartblock-notifier.

Fig. 2: An example of parent-child smart apps. The example code only includes the snippets related to app communication.

The code has been modified from the original to ease the understanding.

Approach. To the best of our knowledge, no work exists
to detect privacy leakages by parent-child smart apps (i.e.,
colluding smart apps). We extend the techniques of SAINT—

which focuses on detecting privacy leakages by individual
smart apps—and design PDColA to detect privacy leakages

by partent-child smart apps.

Specifically, for a parent app, PDColA finds its children

through the “app” input. It then analyzes each entry method

in each app separately. For each entry method in either the

parent or child smart app, PDColA builds an Inter-procedural

Control Flow Graph (ICFG) as in [12], and creates a call

graph. After that, for an entry method, it constructs an inter-
App Control Flow Graph (ACFG) by connecting ICFGs of

all involved methods in different apps. For example, if a

method M1 in a child app invokes a method M2 in the parent

app, PDColA intercepts app.getParent() and directly

connects M1 with M2. Similarly, if a method N1 in the parent

app invokes a method N2 in the child app, PDColA intercepts

getChildApps() or findChildAppByName() and

connects N1 with N2. Finally, each ACFG is analyzed

separately. We consider user inputs and environment variables

in all apps as taint seeds.

C. Risk Ranking

We propose a risk ranking model to evaluate the risk levels

of detected leakage instances for assisting users to prioritize

handling higher-risk threats. It takes data source-sensitivity
and data destination-severity into consideration.

Let a privacy leakage instance be I = (ds, dd), where
ds = {d0s, ..., dns } denotes the set of data sources, and dd the

data destination (for a taint sink, there may be more than one

kind of sensitive data being sent out to a destination). The

risk level of I is represented as Risk(I), which is determined

by the risk levels of both data sources and data destination,

as described below.

• Data sources are related to taint seeds. (1) As user inputs
may contain personally identifiable data, which can

be used to profile user behavior, we assign a high

sensitivity value 2 to user inputs. (2) Some environment

variables can reflect the status of a smart home (e.g.,

whether the door is locked/unlocked). We thus assign a

high sensitivity value 2 to three types of environment

variables, including device, location and event, and a low

sensitivity value 1 to state.
• Data destinations are related to taint sinks. Smart apps can

send data to different destinations, which are divided into

three categories: (1) device manufacturer/app developer,

(2) Samsung (if the URL contains “SmartThings” or

“Samsung”), and (3) user/user’s contacts (if the destination

is specified by a user, e.g., an app may ask the user to

input a phone number). We assign different severity

values to them: 3 to app developer/device manufacturer,

2 to Samsung, and 1 to user/user’s contacts.

Finally, the risk level of an instance I is represented

as Risk(I) = (Risk(ds), Risk(dd)), where Risk(ds) =
maxni=0 Risk(dis), i ∈ [0, n], is the sensitivity value of the

data source(s), and Risk(dd) the severity value of the data

destination. The higher a value is, the more risk the privacy

leakage instance has. For each privacy leakage instance,

PDColA outputs its risk level, including the sensitivity value

of the data source(s) and severity value of the data destination.



IV. Evaluation

A. Experimental Settings
As SAINT focuses on a single smart app, we first compare

PDColA to SAINT on detecting privacy leakages of each

single smart app, and then evaluate PDColA under the parent-

child smart app scenario.

Our experiments were conducted on a machine with an

Intel Core i7-7700 CPU @ 3.60GHz with 16GB RAM.

Datasets. We use two datasets to evaluate PDColA.

• For fair comparison between PDColA and SAINT, we

use the same dataset that was used by SAINT. Specifically,

Dataset-I contains 168 official apps from the SmartThings

GitHub repo [18] and 62 third-party apps from the

SmartThings community forum [19].

• We create Dataset-II containing 18 pairs of hand-crafted

parent-child smart apps, which is used, together with

Dataset-I, to evaluate whether PDColA can successfully

detect sensitive data flows of parent-child smart apps.

B. Comparison with SAINT
We use Dataset-I to compare PDColA with SAINT. As

PDColA and SAINT consider taint seeds and taint sinks

differently (see Section III-A), their results of privacy leakage

detection may not be the same.

Differences due to Taint Seeds. PDColA considers events

as taint seeds (as they may contain sensitive data that can

be used to profile user behavior), but SAINT does not. There

are 16 privacy leakage instances where the taint seeds are

the event information, which are manually verified. However,

these instances are missed by SAINT, causing false negatives.

For example, an app sends the current humidity level, which

is the value of the humidity event, to a recipient by invoking

sendSmsMessage().
Differences due to Taint Sinks. Three messaging APIs,

which are impossible to send messages to a destination with

potential risks, are excluded from being considered as taint

sinks by PDColA, which however are considered by SAINT.

There are totally 84 privacy leakages instances whose taint

sinks are one of the three messaging APIs. We manually

verified these instances. However, these instances are reported

by SAINT, causing false positives.

Risk Analysis. There are totally 272 privacy leakage in-

stances detected by PDColA. SAINT detects 340 leakage

instances, where 84 are false positives due to it considers

three messaging APIs as taint sinks. Moreover, 16 instances

are missed by SAINT as it does not consider events as taint

seeds. We manually checked the reported privacy leakage

instances and confirmed the results. The manual checking

is feasible since smart apps are comparatively smaller than

other programs such as mobile apps and web applications.

Table I shows the breakdown of the detected privacy leakage

instances by PDColA in terms of different values of data

source-sensitivity and data destination-severity (the meaning

of these values is discussed in Section III-C).

TABLE I: Privacy leakages breakdown.

(a) Data source-sensitivity.

Sensitivity value 2 1

# of instances 246 26

(b) Data destination-severity.

Severity value 3 2 1

# of instances 116 9 147

C. Study of Parent-Child Smart Apps
We next use both Dataset-I and Dataset-II to evaluate

PDColA’s capability of detecting privacy leakages by parent-

child smart apps.

Results of Dataset-I. Three sets of parent-child smart apps

are found in Dataset-I.
• The first set is shown in Figure 2. In smartblock-char-
sender, the data sources of the privacy leakage include

location information and user name, and the destination

is the device manufacturer’s URL. As a result, the risk

level is (2, 3). Similarly, in smartblock-notifier, the data

sources of the leakage include event infromation and user

name, and the destination is the device manufacturer’s

URL. Thus, the risk level of the leakage is also (2, 3).

• In the second set, the parent app ecobee-connect first

generates a message including the child devices’ status

(i.e., connected or disconnected). This message is then

shared with its children and sent by its children to

SmartThings and device manufacturer. The risk level

is (2, 3) if the message is sent to device manufacturer,

and (2, 2) if sent to SmartThings.

• In the third set, the parent app sends a value, which is

depended on a user input, to its child app. Based on the

value, the child app then updates the color temperature of

an IoT device, and reports the updated color temperature

to SmartThings. Thus, the risk level is (2, 2).

Note that only when both parent and child apps are

analyzed together, a precise detection result about what
sensitive data is sent to which destination can be obtained,

which however cannot be achieved by SAINT.

Results of Dataset-II. Dataset-II contains 18 sets of hand-

crafted parent-child smart apps. Below we describe how we

created these parent-child smart apps.

• We first randomly selected 12 smart apps from Dataset-I,
which are considered as parent apps, and another 12

smart apps as child apps. We then inserted a line of

code into each parent app to indicate which app is its

child, and modified the parent app code to let it invoke

a method defined in the child (or modified the child

app code to let the child invoke a method defined in

the parent). Moreover, we make sure that the selected

method to be invoked is involved in a sensitive data flow.

This resulted in 12 pairs of parent-child smart apps.



• We also randomly selected 12 third-party smart apps from

the SmartThings community forum [19], and followed

the same way above to create another 6 pairs of parent-

child smart apps.

Through this, each pair of parent-child smart apps comes

with the ground truth of what data leaks are in these apps.

The evaluation result shows that PDColA can successfully

find all the data leaks and determines the data sources and

destinations correctly.

V. Related Work

This section discusses the related work. We first discuss the

related work on analyzing IoT applications, and then discuss

the related work on privacy leakage detection.

Analysis of IoT Applications. Many approaches have been

proposed to analyzed IoT applications [1], [11], [12], [20]–

[26], [26], [27], [27], [28], [28]–[30], [30]–[36]. These works

centered on the security of IoT programming platforms and

IoT devices. For example, ContexIoT provides contextual

integrity for smart apps [12]. HAWatcher extracts semantics

from smart apps for anomaly detection [29].

Some aim to detect unsafe interactions between IoT apps,

which are caused by multiple IoT apps control the same device

or influence the same physical channel [31], [37]–[40]. For

example, a user may install an app A1 to open the window

if the temperature is too high, and another app A2 to close

the window when the user leaves the house. Considering

the scenario: if the temperature is too high, A1 opens the

window; if the user leaves home, A2 closes the window. The

the two apps conflict.

However, these approaches differ from PDColA in three

aspects. (1) Research problems are different: PDColA aims

to detect private leakages rather than unsafe interactions.

(2) Techniques are different: PDColA applies taint analysis,

while these approaches apply other kinds of techniques like

model checking [21], [41], [42]. (3) Apps are different: PDColA
analyzes parent-child apps which do not necessarily control

the same device or influence the same physical channel.

Privacy Leakage Detection. Many sensitive data tracking

tools have been designed for mobile apps and other do-

mains [4]–[10], [43], [44], which however are inadequate

for analyzing smart apps [1], [45], [46].

SAINT [1] is the first system that detects sensitive data

flows in smart apps. However, as taint seeds and taint sinks

considered by SAINT are not appropriate, it has high false

positives and false negatives. Moreover, it can only detect

privacy leakages by individual smart apps. In thiw work, we

design PDColA, which addresses the limitations of SAINT,

and extends the technique to detect privacy leakages by

parent-child smart apps.

VI. Discussion

Smart apps run in a sandboxed environment [47], which

limits apps’ ability to share data. We have identified one type

of colluding smart apps, i.e., parent-child smart apps, which

can share data via overt channels. There may exist other types

of colluding smart apps. For example, two smart apps, unlike

parent-child apps, cannot communicate with each other but

send data to the same destination. While each piece of data

does not cause harms, the aggregated data is dangerous and

can be used to learn the status of smart homes. We plan to

investigate this problem, specifically, which insensitive data if

aggregated would cause high privacy risks, and notify users

if those smart apps are installed together.

Moreover, we also plan to investigate whether or not smart

apps can communicate via covert channels. Many approaches

on detecting colluding mobile apps’ communication via covert
channels have been proposed [48]–[51]. We will investigate,

whether covert channels are possible between smart apps,

and if so, whether the existing approaches can be applied for

the smart app scenario.

This research identifies a new problem of smart app

collusion. It demonstrates the importance of analyzing parent-

child smart apps to achieve precise privacy leakage detection.

We hope it can inspire and lead to new ideas and techniques

for this critical problem.

VII. Conclusion

To the best of our knowledge, no work exists to detect

smart app collusion. We propose PDColA, being the first one

in the literature, to detect privacy leakages by parent-child

smart apps. PDColA addresses the limitations of SAINT, and

extends the technique of SAINT for analyzing parent-child

smart apps. The evaluation shows that PDColA achieves

higher accuracies than SAINT in detecting privacy leakages

by individual smart apps, and is effective to detect privacy

leakages by parent-child smart apps.
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