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Abstract—Android Application Framework is an integral and foundational part of the Android system. Each of the two billion (as of 2017)

Android devices relies on the system services of Android Framework tomanage applications and system resources. Given its critical role,

a vulnerability in the framework can be exploited to launch large-scale cyber attacks and cause severe harms to user security and privacy.

Recently, many vulnerabilities in Android Framework were exposed, showing that it is indeed vulnerable and exploitable. While there is

a large body of studies onAndroid application analysis, research onAndroid Framework analysis is very limited. In particular, to our

knowledge, there is no prior work that investigates how to enable symbolic execution of the framework, an approach that has proven to

be very powerful for vulnerability discovery and exploit generation.We design and build the first system, CENTAUR, that enables symbolic

execution of Android Framework. Due to themiddleware nature and technical peculiarities of the framework that impinge on the analysis,

many unique challenges arise and are addressed in CENTAUR. The system has been applied to discovering new vulnerability instances,

which can be exploited by recently uncovered attacks against the framework, and to generating PoC exploits.

Index Terms—Symbolic execution, concolic execution, vulnerability discovery, exploit generation, android framework
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1 INTRODUCTION

THE global smartphone market is booming and Android
dominates the market with a share of 87.6 percent [36]. As

of 2017, there were two billion active Android devices [45].
Each device relies on the Android Application Framework
(Android Framework, for short) to make it useful. E.g., all the
user interface designs and multi-tasking features would not
work without Window Manager Service (WMS) and Activity
Manager Service (AMS) of Android Framework; as another
example, apps cannot obtain the GPS location without Loca-
tion Manager Service (LMS) of the framework. Thus, Android
Framework is an integral and foundational part of theAndroid
system; it runs on eachAndroid device formanaging all appli-
cations and providing a generic abstraction for hardware
access [29]. Recently, many vulnerabilities in Android Frame-
workwere identified [17], [18], [19], [20]. A vulnerability in the

framework can lead to large-scale cyber attacks and cause seri-
ous harms to user security and privacy; e.g., malicious apps
can exploit them to steal user passwords, take pictures in the
background, launchUI spoofing attacks, and tamperwith user
data [54], [56], [57].

Despite the critical role of Android Framework and the
concern of vulnerabilities hidden in its multi-million lines
of code, most of the existing work has been focused on
analyzing Android applications [2], [11], [12], [13], [14], [24],
[25], [41], [42], [43], [48], [53], [62], [66], [67]. Very few sys-
tems are available for analyzing Android Framework;
they either perform fuzzing [26] or simple static analysis,
such as call graph generation and its reachability analy-
sis [3], [5], [6].

As a result, the insecurity analysis of the framework has
been largely imprecise and requires significant manual
effort [54], [56]. For example, Shao et al. [56] uncovered a
very interesting type of Android Framework vulnerabilities
that are due to inconsistent permission checking (detailed in
Section 8.3); however, due to the overwhelming amount of
manual effort needed to validate their findings, the process
of vulnerability discovery was tedious and error-prone;
moreover, the reported vulnerabilities were hard to verify
since no PoC exploits are generated. Plus, an increasing
number of vulnerabilities have been revealed [10], [17], [18],
[19], [20], [34], [57], [61], andmanymore yet discovered from
many custom system services and Google’s standard ones.
Thus, there is an urgent need for techniques and tools for pre-
cise and automated insecurity analysis of Android Frame-
work. In particular, to our knowledge, there is no tool that is

� L. Luo and Q. Zeng are with the Department of Computer Science and
Engineering, University of South Carolina, Columbia, SC 29208.
E-mail: lluo@cse.sc.edu, zengqiang.buaa@gmail.com.

� C. Cao, X. Xing, and P. Liu are with the College of Information Sciences and
Technology, Pennsylvania State University, University Park, PA 16802.
E-mail: caochen@iie.ac.cn, {xxing, pliu}@ist.psu.edu.

� K. Chen, J. Liu, L. Liu, and N. Gao are with the Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100012, China, and also
with the School of Cyber Security, University of Chinese Academy of Sciences,
Beijing 100049, China. E-mail: {chenkai, liujian6, liulimin, gaoneng}@iie.ac.cn.

� M. Yang is with the School of Computer science, FudanUniversity, Shanghai
200433, China. E-mail: m_yang@fudan.edu.cn.

Manuscript received 30 Dec. 2018; revised 2 July 2019; accepted 6 Aug. 2019.
Date of publication 20 Aug. 2019; date of current version 3 Nov. 2020.
(Corresponding author: Qiang Zeng.)
Digital Object Identifier no. 10.1109/TMC.2019.2936561

2946 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 12, DECEMBER 2020

1536-1233� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of South Carolina. Downloaded on August 18,2022 at 03:08:18 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-2476-7831
https://orcid.org/0000-0003-2476-7831
https://orcid.org/0000-0003-2476-7831
https://orcid.org/0000-0003-2476-7831
https://orcid.org/0000-0003-2476-7831
https://orcid.org/0000-0002-5624-2987
https://orcid.org/0000-0002-5624-2987
https://orcid.org/0000-0002-5624-2987
https://orcid.org/0000-0002-5624-2987
https://orcid.org/0000-0002-5624-2987
https://orcid.org/0000-0002-7557-8347
https://orcid.org/0000-0002-7557-8347
https://orcid.org/0000-0002-7557-8347
https://orcid.org/0000-0002-7557-8347
https://orcid.org/0000-0002-7557-8347
https://orcid.org/0000-0001-9714-5545
https://orcid.org/0000-0001-9714-5545
https://orcid.org/0000-0001-9714-5545
https://orcid.org/0000-0001-9714-5545
https://orcid.org/0000-0001-9714-5545
https://orcid.org/0000-0002-5091-8464
https://orcid.org/0000-0002-5091-8464
https://orcid.org/0000-0002-5091-8464
https://orcid.org/0000-0002-5091-8464
https://orcid.org/0000-0002-5091-8464
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:


able to analyze the framework through symbolic execution, a
precise and automated analysis approach that has proven to
be very powerful for vulnerability discovery and exploit gen-
eration [4], [9], [28].

This work is to fill the gap, aiming to (1) study the unique
design features and technical peculiarities of the framework
that may impede symbolic execution analysis, (2) design
and build a system that enables symbolic execution of the
Android Framework, and (3) apply the system to precisely
and automatically finding zero-day vulnerability instances
and generating PoC exploits to validate the findings; such
exploits can also be fed into defense systems for automated
malware signature generation [4], [16].

While many symbolic execution systems have been pro-
posed for analyzing Windows programs [7], [27], [28], Unix
programs [4], [8], [9], and Android apps [1], [37], [46], [47], [64],
none has explored how to symbolically analyze such com-
plex middleware as Android Framework. Due to unique
characteristics of the framework, many new challenges arise.

Challenge 1. Unlike an independent program, Android
Framework is a large piece of middleware consisting of
many system services, atop which Android applications are
started and run. It is not surprising that Android Framework
has a complex initialization phase, which parses system and
application settings and then prepares all the system services.
Symbolic execution that starts from the main entry of
Android Framework, SystemServer.main, would quickly
cause state explosion and hence cannot reach deep code
paths. Meanwhile, Android Framework exports system

services to apps in the form of service interface methods (also
called entrypoint methods); e.g., in Android Framework 5.0,
there are 3,079 entrypoint methods exported. Our insight is
that, instead of analyzing Android Framework as a whole,
the capability of analyzing each entrypoint method separately is the
key to the scalabilityof the symbolic execution analysis.

Under-constrained symbolic execution can directly start
from an arbitrary function within a program [51]. However,
the context information, such as the type and value of varia-
bles, for executing the target function is missing and thus
many problems may be caused. First, without the type infor-
mation, it is hard to precisely determine the dispatch target
of a virtual function call. For example, Fig. 1 shows the code
for the service interface method getProviders,1 which
returns the names of the GPS providers that the calling app
is allowed to access. Line 16 contains a virtual function call to
checkPermission through mContext, a reference vari-
able of the Context type; Context is an abstract class
extended by four classes, including ContextWrapper,
ContextImpl, BridgeContext, and MockContext, each
of which implements the function checkPermission and
is further inherited by other classes. Without the concrete
type information of the object pointed to by mContext, it is
hard to precisely determine the dispatch target of the call.
Such virtual function calls prevail in the framework code.
Consider a call s.iterator() as another example, where
s is a reference of the Set interface type; Set is implemented
by over 40 subclasses in Android Framework code, which
means that symbolic execution needs to try each possibility
if the type information of the object pointed to by s is miss-
ing, causingmany spurious paths to be explored.

Second, without the value information of variables, the
state explosion problem can be exacerbated. For example,
consider mProviders in Line 6 as an example, which is an
ArrayList that stores the currently installed GPS providers;
if the elements in the list are unknown, it is difficult to carry
out a loop that iterates through the list. One workaround is
to regard the list as a symbolic input and then handle it
using lazy initialization [39]; this way, however, the loop
becomes unbounded and elements of the list become sym-
bolic, which exacerbates the state explosion problem.

Therefore, while it increases the scalability of analysis by
directly starting symbolic execution from a system service
entrypoint method (i.e., API), how to deal with the situation of
the missing context information is a challenging problem (C1). To
resolve it, we employ an analysis scheme that bridges con-
crete execution and symbolic execution, allowing analysis to
start from an arbitrarymiddleware APImethod (Section 3).

Challenge 2. Another uniqueness is the form of exploits. Exist-
ing techniques typically generate PoC exploits as some sim-
ple form of inputs of stand-alone executables, such as a
command line argument, a format string, a network packet,
etc. In contrast, the exploit we consider here is a malicious
app, which comprises the app’s configuration (i.e., the man-
ifest file) and code that issues system service calls.

From the perspective of finding vulnerabilities exploitable
by a malicious app, any framework variables derived from
the malicious app are under the control of attackers, and

Fig. 1. The getProviders service interface method.

1. The code snippet has been modified slightly from the original to
ease the understanding.
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thus should be specified as symbolic inputs. However,
Android Framework contains a large number of data struc-
tures. Given an app, the variables derived from it scatter in
the form of object fields and array elements in the many data
structures.

In Fig. 1, for example, mUserIds at Line 28 is an Array-
List that stores the information of all the installed apps
with one element for each app. The object pointed to by ps

at Line 16 is an element of mUserIds (Line 33) derived
from the calling app and thus should be handled as a sym-
bolic input (as it is under the control of attackers), such
that all the branches in the function getAllowedReso-

lutionLevel can be explored by considering different
values of the object. How to automatically identify variables
derived from the malicious app, among the large number of data
structures in the framework, is an intriguing new problem as
well as a challenge (C2).

Our intuition is that, as the framework stores information
for multiple clients (i.e., apps), there should exist certain pat-
terns used to access the client-specific information when the
framework services a client’s call. This intuition is verified
via our manual investigation. Based on the patterns how cli-
ent-specific variables are accessed upon a system service
call, a customized taint analysis approach, called slim taint-
ing, is designed to precisely and automatically pinpoint cli-
ent-specific variables (Section 4).

Challenge 3. A straightforward design is to place the sym-
bolic execution engine inside the Android system, such that
the analyzer can make use of the underlying system conve-
niently (e.g., to invoke native libraries). However, the
Android system is designed for concrete execution, which is
very different from symbolic execution in terms of thread
management, garbage collection, object representation,
instruction execution, etc. Thus, with the “inside-the-box”
design, the symbolic executor implementation has to take
care of the compatibility issues. This significantly complicates
the symbolic executor implementation. Moreover, whenever
the related Android components (e.g., the Android Runtime)
are changed, the implementation of symbolic executor has to
be updated and verified. To avoid the complicated imple-
mentation and endless maintenance, a decoupled architec-
ture is desired. However, how to design an architecture that can
make use of the Android execution environment without leading to
a complex coupled implementation is a challenge (C3).

To solve the challenge, an innovative component of the
system is designed to migrate information generated in
Android, such as the classes and objects, to the external
symbolic execution environment (Section 5).

We have overcome the challenges above and imple-
mented a system named CENTAUR for symbolic execution of
the bytecode of Android Framework (i.e., CENTAUR does not
need the source code of the framework to perform analysis),
and it is publicly available.2 We concretely demonstrate
how CENTAUR can be applied to vulnerability discovery. In
contrast to recent research that relies on laborious and
error-prone manual work for finding framework vulnerabil-
ities [54], [56], we show that how it is automated and guar-
antees zero-false positives. Finally, we make use of CENTAUR to

generate PoC exploits to validate the findings. We make the
following contributions.

� Many unique design features and technical internals
of the framework are studied and documented. We
have revealed how application-specific information
is retrieved (Section 4.3), categorized how calls
among system services are handled (Section 6), and
explored messaging and JNI calls (Section 7). As a
result of the efforts, we have established an in-depth
knowledge base that future analyses of the frame-
work can leverage.

� Unlike previous symbolic execution techniques that
either start analysis from the main function or ana-
lyze a non-main function without the context infor-
mation, we propose techniques that allow service
interface methods of middleware to be analyzed sep-
arately, for much improved scalability, without
harming the soundness of the analysis results.

� A novel tainting analysis technique is proposed to
precisely identify the framework variables derived
from a given app. It is particularly suitable for vul-
nerability discovery as it considers all possible val-
ues under the control of a malicious app.

� An innovative architecture that builds the symbolic
executor out of the Android system is proposed. An
enabling algorithm that migrates the execution con-
text information from the Android system to the
symbolic executor is designed.

� We have implemented CENTAUR and demonstrated
its effectiveness and precision through applications
of vulnerability discovery and PoC exploit genera-
tion. To our best knowledge, CENTAUR is the first sys-
tem that supports symbolic execution of Android
Framework. It exemplifies symbolic analysis of com-
plex middleware, a largely omitted but important
research problem.

2 BACKGROUND

Android Framework. Android Framework provides a collec-
tion of system services, which implements many fundamen-
tal functionalities, such as managing the life cycle of all
apps, organizing activities into tasks, and managing app
packages. Most of the system services run as threads in the
system_server process [29], while some others run as
threads in other processes, e.g., com.android.phone,
com.android.keychain, and com.android.input-

method.latin, etc.
A system service exposes its service interface methods

invokable by apps, and a system service call is handled in the
form of a remote procedural call through the Binder IPC
mechanism, which dispatches the call to one of the threads
of the target system service. Android Framework is mainly
implemented in Java. For example, in Android Framework
5.0, there are 2.4 million lines of Java code and 880 thousand
lines of C/C++ code. Currently, CENTAUR can only perform
symbolic execution of the Java code.

Symbolic Execution. Symbolic execution provides a means
of efficiently exploring execution paths [40]. For example,
consider the function getAllowedResolutionLevel in

2. https://github.com/Android-Framework-Symbolic-Executor/
Centaur
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Fig. 1, by assigning a symbolic value to ps, symbolic execu-
tion analysis can iterate every of the three paths and pre-
cisely provide the condition that the symbolic value should
satisfy for executing a given path; e.g., the symbolic execu-
tion analysis can produce the path condition for reaching
Line 18: ps.contains(ACCESS_FINE_LOCATION).

Symbolic execution is particularly suitable for vulnerabil-
ity discovery. First, it performs an efficient and automatic
path exploration and ideally explores all possible paths, so
that it is able to discover as many vulnerability instances as
possible. Second, for each path explored, it records a path
condition, which is a symbolic expression describing the
condition that should be satisfied by the input values in
order that the path is taken. Consequently, by resolving the
path condition, one can obtain the concrete input values
that force the execution to follow the corresponding path;
the concrete input values can be used to construct exploits,
and can be fed into real program execution for verifying the
suspected vulnerability. This way, it guarantees zero false-
positives in vulnerability discovery.

One of the main challenges in applying symbolic execu-
tion to large-sized programs is to cope with the path explo-
sion problem, as the number of distinct execution paths is
exponential in the number of branches that depend on sym-
bolic values. We mitigate the problem using multiple ways,
such as analyzing service interface methods separately and
precisely identifying variables as symbolic inputs.

3 OVERVIEW

3.1 Approach Overview

When a vulnerability is exploited, some security property is
violated. For example, a vulnerability is exploited if the prop-
erty that “some resource/service can only be accessed by an app
with proper permissions” is violated; a task-hijacking attack
succeeds when the security property that “the malicious activ-
ity should not be placed onto the back stack hosting the victim
activity” is broken. In order to discover vulnerabilities that
can be exploited by a given type of attacks A that breaks
some security property P , we employ symbolic execution to
explore program paths. Specifically, first, the violation of P
is represented as a set of constraints C, called security-property
violation constraints, which is a quantifier-free first-order logic
formula in terms of Android Framework variables. Then,
during path exploration, C is added to each path condition,
wherever the variable scopes allow, before the path condi-
tion is resolved. If the augmented path condition is resolv-
able, a path that can be exploited byA is found. The resolved
variable values are used to construct PoC exploits.

3.2 System Overview

Our observation of Android Framework is that its execution
consists of the relatively stable initialization phase and the

ready-for-use phase; the initialization phase is fairly stable
when the system restarts, since the system boots mainly
according to the system configuration, which itself is stable.
Thus, to resolve the problem of the missing context informa-
tion (C1), we propose a phased concrete-to-symbolic execution
(PC2SE) for analyzing middleware software like Android
Framework; it runs the initialization phase as whole-system
concrete execution and then performs symbolic execution
starting at one of the entrypoint methods under the execu-
tion context provided by the concrete execution. It avoids the
state space explosion due to the complex initialization phase
and meanwhile provides the context for symbolic execution,
such that the type and value information of the input variables
(i.e., non-locally defined variables read during symbolic exe-
cution) is available. Plus, the proper combination of concrete
and symbolic executions delivers analysis results that are
sensible and easy to interpret.

When starting the symbolic execution from an entrypoint
method, if only the parameters of the entrypoint method are
set as symbolic inputs [49], the path exploration will be
severely limited, leading to over-constrained symbolic execu-
tion. In the framework, any variables derived from the mali-
cious app (such as its manifest file) are under the control of
attackers and can affect the execution of system service calls;
hence, these variables should be set as symbolic inputs.
To resolve C2 (i.e., identifying variables derived from the
malicious app as symbolic inputs), instead of tracking how
information is flowed from an app to the framework, we
investigate how the app-specific variables in the framework
are accessed, and propose slim tainting that recognizes such
accesses to identify those variables as symbolic inputs on
the fly during path exploration (Section 4). This way, the
path exploration considers all possible values of these
variables.

To address C3 (i.e., to avoid complicated implementation
and endless maintenance due to the coupled design), we pro-
pose a novel architecture that fits PC2SE, as shown in Fig. 2,
where the symbolic execution engine is built outside Android
and makes use of the execution context migrated from an
Android system. As the symbolic execution engine does not
need to take care of the comparability issues but is specialized
for path exploration, its design and implementation are
largely simplified. Plus, since the engine is decoupled from
Android, it does not need to bemaintainedwhen theAndroid
system code is updated.

The whole-system concrete execution is performed in the
Android system. Between the Android system and the sym-
bolic execution engine is the execution context query server,
which migrates the context information from Android to
the symbolic execution engine. How to correctly interpret
the semantics of the bytes and bits in the heap captured at
Android and how to mitigate the information seamlessly
will be discussed in Section 5. Finally, an RPC server is
installed on the Android system, such that JNI calls during
path exploration are delegated to the RPC server, which
will be discussed in Section 7.

4 IDENTIFYING SYMBOLIC INPUTS

While phased concrete-to-symbolic execution allows analyz-
ing each system service API separately, which significantly

Fig. 2. Architecture of CENTAUR.
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improves the analysis scalability, this strategy alone is inade-
quate. Compared to standalone programs, a uniqueness of
Android Framework is that it contains not only variables repre-
senting the statuses of the system services and the underly-
ing system, but also variables derived from the apps. From
the perspective of finding vulnerabilities exploitable by a
malicious app, (1) variables that are derived from the mali-
cious app are under control of attackers, and thus should be
specified as symbolic inputs, such that branches depending on
them are all explored during the analysis; and (2) on the other
hand, if variables that are not derived from the malicious
app are set as symbolic inputs, then spurious paths will be
explored, which will harm the scalability of symbolic execu-
tion and cause the results to be difficult to interpret.

4.1 App-Specific Variables

Our investigation on Android Framework reveals that
there are two distinct types of variables. The first type,
called non-app-specific variables, are allocated regardless of
apps in the system. Take the code in Listing 1 as an exam-
ple. The ArrayList LocationManagerService.mPro-

viders (Line 6) exists no matter what apps are running or
installed. It should not be regarded as a symbolic input,
since it is not under the control of the malicious app; other-
wise, symbolic execution of the loop at Line 6 will hurt the
analysis scalability, and also generate results difficult to
interpret.

The second type, called app-specific variables, stores app-
specific information. For instance, mUserIds at Line 28 is
an ArrayList that stores the information of the installed
apps. with one element for each app. The object pointed to
by ps at Line 16 is an element of mUserIds (Line 33); it is
derived from the calling app and thus should be handled as
a symbolic input, such that all the branches in the function
getAllowedResolutionLevel will be explored by con-
sidering different values of the object.

Unlike the Linux kernel, which stores most information
of a process in a centralized structure task_struct, the
app-specific information in Android is stored in many dif-
ferent data structures organized by the system services.
Given an app, the framework variables derived from it scat-
ter and exist as objects fields and array elements among the
many data structures.

Therefore, the task of selecting variables as symbolic
inputs is not only to find data structures for storing app-
specific information but also to locate fields or elements
within the data structures that are derived from a given
malicious app. For instance, in addition to determining
mUserIds is an app-specific variable, we need to locate
which element in the array is derived from the malicious app.
Hence, the task is like looking for a needle in a large pile of
hay considering the many complex data structures.

4.2 Why Not Use Traditional Tainting?

To determine which variables are derived from a given app,
a natural method is to use tainting to track how the informa-
tion flows from the app to the processes of Android Frame-
work. However, such information flow is very complex
involvingmultiple intricate steps, including app installation,
system boot, and starting the app. Given the complexity of
these steps and the huge amount of code involved, it is very
difficult, if not impossible, to precisely track the information
flow. Note that existing Android taint analysis systems, such
as TaintDroid [24], FlowDroid [2], and TaintART [58], target
Android applications; e.g., they are able to track whether the
return value (e.g., GPS locations) of a system service call
flows, according to the app code, to specific sinks (e.g., Inter-
net), but none is able to track how the whole app-level infor-
mation propagates withinAndroid Framework.

4.3 Access Patterns

Instead of proposing a even more complex taint analysis
technique to track the information flow, we resolve the chal-
lenge from a novel angle by looking at how the app-specific
variables are accessed. As the framework stores information
for multiple apps, when a system service call from an app is
handled, we suspected there should exist specific ways to
retrieve the information for the calling app. We thus first
manually analyzed part of the framework code (related to
vulnerabilities in Table 3). During the manual investigation,
for the code used to retrieve the calling app’s information,
we summarized the access patterns. We then verified
whether the summarized access patterns kept by checking
the code for over twenty other system calls. Moreover, we
further verified the access patterns backward starting from
the locations when elements of various data structure instan-
ces were retrieved. Our investigation shows that app-specific
variables are stored in two categories of data structures,
array-based ones (built-in arrays, ArrayList, SparseArray,
etc.) and hash-table-based ones (HashMap, HashSet, etc.),
and the two categories are accessed in two characteristic
ways, respectively.

First, given an array-based variable, the framework
retrieves an app’s information in the array using an index
that is a function of the app’s unique UID (an app’s UID is
assigned upon installation and not changed). Our investiga-
tion shows that two formulas are used to calculate the index.
One is ðuid%100; 000� 10; 000Þ, converting the user app’s
UID into an index to retrieve the element for the app from a
built-in array or ArrayList; the other one is ðuid%100; 000Þ,
which is used to calculate the index into a SparseArray.3 For
example, as shown in Fig. 1, the function getUserIdLpr

(Line 29) utilizes the first formula to calculate the index into
the ArrayList Settings.mUserIds (Lines 31 and 1).

Second, for hash-table-based variables, no matter it is
hash table or a set, the package name (or the package name
concatenated with a component name) is used as the key to
access elements. Fig. 3 shows an example of retrieving infor-
mation from a hash-table-based variable.

Fig. 3. Example of retrieving information from a hash-table-based vari-
able mPackages.

3. Two magic numbers appear in the formulas and are worth inter-
pretation. 10,000 means FIRST_APPLICATION_UID (Line 26 in Fig. 1),
indicating the smallest UID a user app can have, while 100,000 means
PER_USER_RANGE (Line 27), indicating the largest UID plus one.
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In short, while there are a large variety of data structures
in the framework, our manual investigation on the frame-
work code shows that they commonly follow the two fixed
access patterns to retrieve the app-specific information when
servicing a system service call. This is verified on Android
Framework versions from 4.0 to the latest version 9.0 that we
have investigated.

4.4 Slim Tainting

Based on the insight, we propose slim taint analysis that tracks
and recognizes the characteristic access patterns on the fly
during path exploration and, when app-specific information
is accessed, sets those variables as symbolic inputs.

Slim taint analysis consists of the following three parts. (1)
Taint sources: the return values of getCallingUID() and
getPackageName() are set as taint sources; they are
unique identifications of an app involved in the characteris-
tic access patterns. (2) Taint propagation: as shown in Table 1,
the taint propagation logic is very concise, involving only
two instructions and one string concatenation function,
which are used in the access patterns aforementioned. (3)
Taint sinks: the taint sinks include the get functions of the
collection data structures as well as bytecode instructions for
loading elements from built-in arrays, such as iaload (loads
from an array of integers) and aaload (loads from an array
of references); they check whether the index or key is tainted,
and if so, the target element is flagged as a symbolic input.

Example. Let us take the code in Listing 1 as an example to
illustrate how slim tainting works. First, the return value
of getCallingUID() (Line 3) is the taint source.
Second, the taint propagates along Lines 31 and 1 accord-
ing to the taint propagation logic in Table 1. Finally,
at Line 33, the get function works as a sink to set the
element (and only this element) accessed via the tainted
index as a symbolic input.

Slim tainting comprises very specific taint sources and a
simple but precise taint propagation logic; it thus avoids the
overtainting and undertainting issues. Section 7 includes its
implementation details. It works through interception of the
function calls and bytecode instructions aforementioned, so
it does not need to change any code of Android Framework
and does not need code annotation.

5 EXECUTION CONTEXT MIGRATION

The PC2SE involves both concrete execution and symbolic
execution. As described in Section 3, it would be very diffi-
cult to modify the Android system (or its emulator) to sup-
port both concrete execution and symbolic execution. To

enable the decoupled architectural design, however, two
challenging tasks should be resolved: (a) how to mitigate
the execution context from the host system to the symbolic
executor, and (b) how to handle function calls (e.g., JNI
calls) that are not interpreted by symbolic execution. This
section discusses the solution to the first task, and the solu-
tion to the second one will be discussed in Section 7.

5.1 Execution Context

In the execution context, the program counter, the register
file, and the stack all obtain proper fresh content when sym-
bolic execution starts at the analyzer; only the heap in the
execution context, which is a collection of classes and objects,
needs to be migrated. The heap memory image in the execu-
tion context is called a snapshot for short. Three problems
have to be resolved for migrating the heap information cap-
tured in a snapshot: (1) how to obtain the semantics of the
bits and bytes in a snapshot? (Section 5.2) (2) how to conduct
the migration during symbolic execution? (Section 5.3) and
(3) how to bootstrap themigration? (Section 5.4)

5.2 Snapshot Parsing and Context Query Server

A snapshot is nothing but an array of bits. However, it
would not work if we simply copy the array of bits to the
symbolic executor, because the ART process in Android
and the JVM instance for symbolic execution differ signifi-
cantly in terms of the low-level representation of classes
and objects. E.g., in our symbolic executor implementation,
each object needs extra space for recording the taint and the
symbolic expression; plus, its heap memory management is
different from the one used in Android. Our insight is that,
given an object, both ART and the JVM instance should
agree on the number of the contained fields, according to
the class definition file, and their values. Therefore, given
an object, the migration is not to copy its bits but to copy the
values of all its fields.

Thus, the parser analyzes the snapshot to obtain all the
active objects (and classes) and, for each object (and class),
records the values of its fields. The information is organized
in a two-tier data structure: the first tier maps an object (or
class) address to a second-tier data structure instance, which
maps field names of an object (or class) or element indexes
of an array to their values.

After the snapshot is parsed and its information is stored,
the execution context query server (in Fig. 2) is used to service
requests from the symbolic executor by returning the infor-
mation about objects, classes and arrays.Multiple query inter-
faces are provided: given a reference value, the type of the
corresponding object can be queried; given a reference value
of an object and the name of one of its fields, the field value
can be queried. Snapshot parsing and information query pro-
vide the foundation for heap informationmigration.

5.3 On-the-Fly Migration

Given an object in the concrete execution world, for fields
of primitive types we can simply copy the field values
after allocating the space from the symbolic executor for
the object. But the handling of reference-type fields needs
more consideration. A deep copy is inefficient while a
simple shallow copy of the reference value will not work as

TABLE 1
Taint Propagation Logic

Inst. /
Function

Operation
Semantics

Taint
Propagation

isub vB vA � C if C == 10,000, tðvBÞ  tðvAÞ
irem vB vA % C if C == 100, 000, tðvBÞ  tðvAÞ
concat vC  vA.concatðvBÞ tðvCÞ  tðvAÞ

Register variables are referenced by vX . tðyÞ  tðxÞ means setting the taint
tag of y to the taint tag of x.
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the reference value only indicates the object location in the
concrete execution world. We choose a variant of the simple
shallow copy: when an object is migrated, we still simply
copy all the field values, but for each reference-typed field,
we set a flag indicating it is a reference value in the concrete
execution world (a boolean attribute snapshotRef is asso-
ciated with each reference-typed field to indicate whether
the filed value is a location in the concrete or symbolic
execution world); later, when one of such reference-typed
fields is used to access its target object, the target object
is either migrated, or (if it has been migrated) the field
value is updated with the reference value in the symbolic
execution world.

Therefore, a hash table, conc2Sym, is maintained to map
reference values in the concrete execution world to ones in
the symbolic execution world. Every time an object o is
migrated, a new pair hrc; rsi is added to conc2Sym, where
rc is the reference value of o in the concrete execution world
and rs symbolic. The hash table is maintained for two pur-
poses. First, it prevents duplicate migration of an object;
that is, an object pointed to by rc is migrated only if rc is not
found in the hash table. Second, the hash table is used to
translate reference values in the concrete execution world, if
they exist in the hash table, to ones in the symbolic execu-
tion world.4

Algorithm. We have designed an algorithm that migrates
classes and objects from the snapshot to the symbolic
executor. It runs by overriding the interpretation of spe-
cific instructions and function in the JVM for supporting
migration. Table 2 shows the list of bytecode instructions
and function whose interpretation is overridden; for
each instruction, the effect that the instruction has on the
operand stack and the description are included. (1) get-
field and getstatic are overridden in order that,
whenever a reference-typed field is accessed, if the object
referenced by the field is not migrated yet, the object
gets migrated and the hash table conc2Sym updated. (2)
If a class has been initialized in concrete execution and
is used in the symbolic executor for the first time, which
automatically triggers the invocation of initClass, that
class is migrated. (3) aaload is overridden to migrate
multi-dimensional arrays. Algorithm 1 shows the main
migration procedures. It involves much complexity due
to the JVM specification, which is not familiar to many
readers, so it is interpreted in detail as follows.

Algorithm 1.Migration of Heap Information

1: function GETFIELD(index)
2: objRef = peekStackTop()
3: fdInfo = getFdInfo(index) " Class-specific info.
4: fd = getFd(objRef, fdInfo) " objRef-specific info.
5: if !fd.getSnapshotRefAttribute() then
6: return super.getfield(index)
7: end if
8: concRef = fd.getValue()
9: symRef = conc2Sym.get(concRef)
10: if symRef == NULL then
11: fdType = fdInfo.getFdType()
12: if fdType == strRef then
13: str = snapshot.getStr(concRef)
14: symRef = searchConstantPool(str);
15: if symRef == NULL then
16: symRef = newString(str);
17: end if
18: else if fdType == arrayRef then
19: entryType = fdType.getEntryType()
20: len = snapshot.getArrayLen(concRef)
21: symRef = newArray(entryType, len)
22: snapshot.copyEntries(symRef, concRef)
23: else " Other reference types
24: symRef = newObj(fdType)
25: snapshot.copyFields(symRef, concRef)
26: end if
27: conc2Sym.addPair(concRef, symRef)
28: end if
29: fd.setValue(symRef)
30: fd.setSnapshotRefAttribute(false)
31: return super.getfield(index)
32: end function
33:
34: function INITCLASS(classInfo)
35: if snapshot.isInitialized(classInfo) then
36: snapshot.copyStaticFields(classInfo)
37: else
38: super.initClass(classInfo)
39: handleBootstrapField(classInfo)
40: end if
41: end function

5.3.1 Migrating Objects

A getfield instruction is used to access non-static fields of
an object. Given a reference objRef to an object (this object
must have been migrated; Section 5.4 explains how this is
ensured) on the stack (Line 2 in Algorithm 1) and the field
index (Line 1; the index value is part of the instruction),
the semantics of getfield is to pop objRef and push the
field value onto the stack. Assuming the field points to an
object that has not been migrated, we regard the access to
the field as a proper occasion to trigger the migration of the
object.

If the field’s snapshotRef attribute is false (Line 5),
which means that either it is a primitive-typed field or it
has a reference value in the symbolic execution world,
the instruction’s interpretation is not changed (Line 6); i.e.,
the filed value is simply pushed onto the stack. If snapsho-
tRef is true and the field value concRef is not found
in conc2Sym (Line 10), the object should be migrated

TABLE 2
Bytecode Instructions (and Function) Used

for Migrating Heap Information

Instruction Stack
[before]![after]

Description

getfield objRef! value get a field value of an object
getstatic !value get a static field value of a class

aaload arrayRef, index load onto the stack
! value a reference from an array

initClass N/A invoked for class initialization

4. The hash table conc2Sym is handled as part of the process state,
and gets stored and restored as the path exploration advances and
backtracks, respectively; this way, the migration status keeps consistent
during path exploration.
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(Lines 11–26); after migration, the pair hconcRef; symRefi is
added to conc2Sym (Line 27).

How to migrate an object is determined by its type
(Line 11). (Recall that, given the reference value, which is the
value of the field being accessed, the execution context query
server can locate and return the target object information, i.e.,
its type and contained field values, from the concrete execu-
tion world.) (1) If the object is a string, the algorithm first
searches for a string that has the same value within the run-
time constant pool in the VM for symbolic execution. If not
found, a new string with the same value is created in the sym-
bolic world (Lines 12–17). (2) If the object is an array, an array
is allocated and all the elements are copied to the new array
(Lines 18–22). This algorithm performs a shallow copy. Thus,
for a multi-dimensional array, e.g., A½5�½10�, only the five ele-
ments in the top-level array are copied at this moment. Later,
when any of the five elements is accessed, the instruction
aaload has to be invoked, which is the reason the interpreta-
tion ofaaload (not shown inAlgorithm 1) is also overridden,
i.e., to migrate second-level arrays. Due to the shallow copy,
an array object is not copied until a reference to the object is
accessed. (3) A reference to an ordinary object is handled by
allocating a new object and copying all its fields (Lines 23–25).

While non-static fields are accessed through getfield,
access to static fields is through getstatic. Thus, to
migrate objects pointed to by static fields, the interpretation
of getstatic has to be overridden, and the interpretation
is similar to that of getfield and is thus omitted.

5.3.2 Migrating Classes

When an operation (e.g., creating an object of a class, or
accessing a class’s static fields for the first time) triggers ini-
tialization of a class during symbolic execution, initClass
is invoked by the underlying VM for symbolic execution
automatically. For classes that have been initialized during
concrete execution, the symbolic executor has to make sure
that they are migrated instead of being initialized, consider-
ing that the static fields have obtained their values during
concrete execution. Thus, when initClass is invoked, the
symbolic executor first checks whether the class has been ini-
tialized in the concrete execution world; if so, the enclosed
static fields in the class are copied from the snapshot to the
symbolic execution world (Line 36). In particular, when an
object of some class is created in the symbolic world for the
first time due tomigration (Line 24), it triggers the invocation
of initClass first, whichmigrates the class.

5.4 Bootstrapping

An important invariant kept during migration is that, when-
ever a field of an object o (resp. an element of an array A) is

accessed, o (resp. A) must have been migrated to the sym-
bolic execution world. Assume f is the field whose access
triggers the migration of the first object; a natural question
is “where does f resides?”. We resolve this bootstrapping
problem by regarding the reference to the system service
class containing the entrypoint method under investigation
as the bootstrap field, and put it in the test driver class. Fig. 4
shows an example of a test driver. A custom annotation
fromSnapshot is used to specify the bootstrap field, which
is recognized and handled by the migration algorithm; spe-
cifically, when a class (TestDriver in this example) is ini-
tialized, it sets the bootstrap field value to the reference
value of the system service object (mService at Line 3) in
the concrete execution world (note that all the system ser-
vice classes adopt the singleton design pattern, so there is no
ambiguity when specifying the reference value).

5.4.1 Migration Tree

The migration of classes and objects forms a migration tree,
which grows as new classes and objects are migrated,
rooted at the class and object corresponding to the bootstrap
field type. We use the test driver in Fig. 4 as an example to
illustrate how the migration tree is built.

getProviders in the LocationManagerService

class is the entrypoint method under investigation. When the
TestDriver class is initialized, the migration algorithm sets
the value of the bootstrap field to the reference to the Location
Manager service object in the snapshot; as a result, when the
bootstrap field is accessed, the service object is migrated cor-
rectly. Fig. 5 shows how the migration tree grows, due to the
execution of the code in Listing 4; here, the root node is the
class and object for LocationManagerService.

Part of the resulted migration tree is showed in Fig. 6. It
also shows how the symbolic input is identified. Because of
slim tainting, the index 54 (in this example, the malicious
app’s UID is 10,054; 54 is due to the formula ðuid%100; 000�
10; 000Þ presented in Section 4.3) is tainted; thus, the element
in the array mUserIds accessed through the tainted index is
identified as a symbolic input.

6 HANDLING SERVICE CALLS

Service calls are frequently used among system services.
Most system services of Android Framework run as threads
in the system_server process [29], but a few run in
other processes (e.g., com.android.keychain, com.

android.inputmethod.latin, etc.). Depending on
whether the caller service and the callee service are in the
same process, a service call is handled in two distinct ways.

6.1 Handling Intra-Process Service Calls

When the caller service and the callee service are in the
same process, the service call is handled as an ordinary
function call. Fig. 7 shows an example, where the Location
Manager Service invokes getProfiles exposed by the User
Manager Service; both services belong to the system_

server process. The call at Line 4 invokes the function at
Line 10, which issues an intra-process service call at Line 11.

Note that UserManager.mService is a variable of the
IUserManager reference, and IUserManager is extended
by multiple classes (including the Proxy/Stub classes to

Fig. 4. Example of a test driver.

LUO ET AL.: TAINTING-ASSISTED AND CONTEXT-MIGRATED SYMBOLIC EXECUTION OF ANDROID FRAMEWORK FOR VULNERABILITY... 2953

Authorized licensed use limited to: University of South Carolina. Downloaded on August 18,2022 at 03:08:18 UTC from IEEE Xplore.  Restrictions apply. 



be introduced in Section 6.2 and the UserManagerService
class). Previous research relies on expert knowledge to man-
ually specify the dispatch target of the call at Line 11 to facili-
tate their static analysis of the framework code [3], [11], [56]
(none performs symbolic execution), while CENTAUR makes
use of the runtime information provided by the execution
context. Specifically, based on the heap snapshot of the exe-
cution context, we can find that the object pointed to by
UserManager.mService is the UserManagerService

type, and thus the call is handled as an ordinary method call.
Thus, expert knowledge andmanual effort are not needed.

6.2 Handling Inter-Process Service Calls

In the framework, when a system service invokes a method
of another running in a different process, the call is handled
via an inter-process communication mechanism called
Binder [23]. The system service interface is defined using
the Android Interface Definition Language (AIDL). From the
defined interface, the AIDL compiler automatically gener-
ates Stub and Proxy classes that implement the interface-
specific Binder-based IPC protocol. A Stub is an abstract
class that implements the Binder interface and needs to be
extended by the actual service implementation, while a
Proxy is used by clients to invoke the service.

In order to perform an IPC service call, the client needs to
first invoke ServiceManager.getService(String)

using a unique string associated with the requested system
service to obtain the Proxy of the service. For example, if a
client wants to call the Telecom Service, it needs to first
invoke ServiceManager.getService(TELECOM_SER-

VICE) to obtain the Proxy of the Telecom Service (Line 23

Fig. 5. An example of migrating the heap. Gray and white rectangles denote classes and objects, respectively. For each class and object,<conRef,

symRef> denotes the mapping between the reference value in the concrete execution world and that in the symbolic world, which is added to the
conc2Sym hash table. The migration of a class also triggers the migration of all its super classes, which are not shown for simplicity.

Fig. 6. Part of a migration tree (with some classes omitted). Gray and white rectangles denote classes and objects, respectively. Rectangles with
diagonal stripes denote objects identified as symbolic inputs. Different arrows denote different instructions that have triggered the migration.

Fig. 7. An intra-process service call example.
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in Fig. 8), and then perform the service call through this
Proxy object (Line 24). After that, the Binder marshalls
parameters of the service call, passes the data across process
boundaries, and finally reassembles the objects in the
remote process, one thread of which (the Telecom Service
thread in this example) then executes the corresponding ser-
vice method.

The functionality of Binder is mainly implemented in
native libraries and the kernel, which cannot be interpreted
by CENTAUR. To enable symbolic execution of such inter-
process service calls,we have designed an automated solution
that fits our decoupled design and migration algorithm. First,
from the heap snapshots of all the processes of the framework,
we build a database containing the type and value informa-
tion of all active objects and classes (Section 5.2).

Second, we take advantage of the fact that Android uses
AIDL to generate Stub/Proxy for all IPCs. By parsing the
AIDL files, we can get the list of Stub/Proxy class pairs.
Next, through a simple class hierarchy analysis, we can
determine the mapping between each Stub type and the
system service class that has extended the Stub. Based on
the list and the mappings, we automatically build a hash
table containing the mapping between each Proxy type
and the name of the corresponding service class (which
extends the Stub generated together with the Proxy type).

Third, during the symbolic execution analysis, CENTAUR

intercepts all the function calls I*.Stub.asInterface().
Using the Proxy type of the parameter of asInterface(),
it queries the hash table to obtain the corresponding system
service class name. Based on the system service type name,
CENTAUR searches in the migration database to locate the
snapshot that contains the system service and obtain the ref-
erence value of the system service object. (Note that to cor-
rectly distinguish references values of different snapshots,
each reference value is extended into the form of pid:

reference_value, where pid refers to the ID of the pro-
cess fromwhich the snapshot is captured.) After that, mSer-
vice is assigned with the obtained reference value and its
snapshotRef attribute is set to true. Finally, when mSer-

vice is accessed, the corresponding system service object is
migrated from the concrete world to the symbolic execution
world, such that, the target service method can be analyzed
under a correct execution context.

Example. Fig. 8 shows an inter-process system service
call example, where the Telecom Account Registry

(running in the com.android.phone process) invokes
getAllPhoneAccountHandles() exposed by the Tel-
ecom Service (running in the com.android.server.

telecom process). The call at Line 17 invokes the function
at Line 22, which first obtains the Proxy object (Line 23)
and then issues an inter-process service call through the
proxy at Line 24. Our system intercepts the asInterface
call to return the reference value that points to the Telecom
Service object.When mService is accessed (Line 24), the
system service object is migrated and the service call can be
symbolically executed.

A small number of system services do not use AIDL to
generate their Stub/Proxy classes; instead, manually
implemented custom classes are provided. One example is
the ActivityManagerService (AMS), whose interface is
also called from the native code; thus, a manual implementa-
tion of its Stub/Proxy is provided. We then can add the
mapping between the Proxy and the corresponding system
service class name into the hash table aforementioned.

Through this, the intricate Binder mechanism that can-
not be analyzed by the symbolic executor can be successfully
handledwithout losing the execution context information.

7 OTHER IMPLEMENTATION DETAILS

7.1 Background on SPF

We built the symbolic executor based on Symbolic PathFinder
(SPF) [50], a symbolic execution framework on top of Java
PathFinder (JPF) [60]. SPF can be understood as a non-
standard Java bytecode interpreter, which enforces path
exploration when interpreting the code.

SPF can be extended by overriding methods that are used
to interpret bytecode instructions. It also supports the inter-
ception of arbitrary function calls for customized handling
during the analysis. Specifically, JPF provides a mechanism
calledModel Java Interface (MJI) that intercepts method invo-
cations for custom handling. CENTAUR makes use of MJI to
intercept certain method calls (e.g., getCallingUid, get-
PackageName, and the get functions of various collection
data structures), and redirects them to our custom imple-
mentation of these functions. Finally, attributes can be
added to associate with each of the class/object fields on the
heap and variables on the stack to record and track states of
interest, such as taints and symbolic expressions.

We added 7,419 lines of code for implementing CENTAUR

through extending SPF. Significant effort has been saved by
building upon SPF, thanks to the decoupled design.

7.2 Classpath

The Java source code in Android is compiled into .jar

files, which comprise standard .class files. The classpath
below shows the classes analyzed by the symbolic executor.

classpath=test_driver_dir;\

services_intermediates/classes-full-debug.jar;\

framework_intermeidates/classes-full-debug.jar;\

core-libart_intermediates/classes-full-debug.jar

The first line specifies the directory containing the test
driver, the next two lines specify the Android Framework
code, and the last line the core libraries of ART.

Fig. 8. An inter-process service call example.
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7.3 Slim Tainting

Slim tainting (Section 4.4) is built into the symbolic executor
by modifying the interpretation of instructions, such as
isub (subtraction), irem (modular), and *aload, and inter-
cepting functions, such as getPackageName, getCallin-
gUID, String.concat (string concatenation), and various
get functions of collection data structures. For each field,
array element, and call-stack variable, CENTAUR adds one
attribute indicating the taint and another indicating the sym-
bolic input property. Through interception of function calls
and adding field attributes, our implementation does not
need to modify or annotate the framework code, which
means that no maintenance efforts are needed when new
versions of Android are released.

7.4 Capturing and Parsing Snapshots

After a heap memory snapshot of an Android Framework
process is captured (using the dumpheap utility), it is first
converted to a standard .hprof file using the hprof-conv
utility in the Android SDK. Next, the .hprof file is parsed
to extract the list of classes and objects stored using a hprof
file parser [33]. The extracted information is then organized
into thememory space of the execution context query server.

7.5 Dealing with Messaging

Two messaging mechanisms that are frequently used by sys-
tem services areMessage Handlers andState Machines.
A Message Handler is associated with a thread’s message
queue, and is used to send messages to the message queue
and handle them as messages come out of the queue [32].
Message Handlers are implemented through Binder, so
they cannot be interpreted by our symbolic executor directly.
To deal with them, we propose to replace the call to send-

Message(message)with a call to the destination handler’s
handleMessage(message). Our symbolic executor inter-
poses the invokevirtual instruction and enforces the
replacement on the fly.

A State Machine can also be used to send and process
messages. It allows processing of messages depending on
the current state of the associated model. A State Machine
sends a message by invoking sendMessage, while the cur-
rent state’s processMessage is invoked when a message is
processed. Thus, it is critical to identify the current state. The
State Machine object contains a field that points to the
mSmHandler object, two fields of which, mStateStack and
mStateStackTopIndex, are used to find the current state
(= mStateStack[mStateStackTopIndex].state). To
handle State Machines, our symbolic executor replaces the
call to mSmHandler.sendMessage(message) with a call
to the current state’s processMessage(message). This
way, we connect the senders and receivers for messages sent
through StateMachines.

7.6 Handling JNI Calls

The framework invokes native code through the Java Native
Interface (JNI)mechanism.Multipleways are adopted to han-
dle JNI calls during symbolic execution. (1) Methods that
return the calling UID (getCallingUid) and the package
name (getPackageName) of the client app are modeled to
return the corresponding information of the malicious app.
Their return values are set as taint sources (Section 4.4). (2)

The return values of other native methods that return app-
specific information of the malicious app are specified as
symbolic inputs; e.g., native methods declared in the pack-
age android.content.res return app-specific informa-
tion. (3) Other calls to native methods are delegated back to
Android through remote procedure calls (RPCs). The RPC
client in the symbolic executor is built similar to jpf-nhan-

dler [55]. While jpf-nhandler delegates native calls to a
host JVM, ours delegates them to an app running as an RPC
server in a remote Android system (Fig. 2), which issues
native calls using reflection on demand. The GSON library
[31] is used for marshalling and unmarshalling method
parameters and return values, which are transmitted
between the RPC server and client via socket.

8 EVALUATION

8.1 Experiment Overview

We first compare CENTAUR against under-constrained sym-
bolic execution (UCSE) in Section 8.2. Both can start symbolic
execution from system interface methods to reach the code
deep in a program, but CENTAUR makes use of the execution
context provided by concrete execution. We should also
compare CENTAUR against symbolic execution that starts
directly from the main entry of Android Framework (i.e.,
SystemServer.main), but note that our symbolic executor
runs outside Android, and it is unlikely to initialize the
framework outside the Android environment, since the ini-
tialization phase of the framework heavily relies on the
Android environment, such as the file systems and other
supporting processes. Concolic execution also makes use of
concrete execution to assist symbolic execution. Specifically,
it uses some input to run a program in order to collect the
symbolic constraints along the concrete execution and then
negates the constraints to explore other paths. Ideally, we
should also compare CENTAUR with concolic execution. How-
ever, we are not aware of any tools that support concolic exe-
cution of Android Framework. Enormous effort would be
required to enable it, as the concolic execution tool has to be
able to track the very complex framework initialization
phase to precisely collect the symbolic constraints. We thus
compare CENTAURwith UCSE only.

Second, CENTAUR provides strong support for vulnerabil-
ity discovery and exploit generation. To demonstrate this,
we investigate two distinct types of recently uncovered
attacks that exploit Android Framework vulnerabilities and
show the results in Sections 8.3 and 8.4.

Finally, the reliability of the approach is investigated. We
present exploit generation experiments based on heap
memory snapshots captured at different times, and analyze
the consistency of the results in Section 8.5.

The experiments were performed on a machine with an
Intel Core i7 4.0 Ghz Quad Core processor and 32 GB RAM
running the Linux kernel 3.13. Exploits were verified on dif-
ferent versions of Android systems from 4.0 to 9.0.

8.2 Comparison with Under-Constrained Symbolic
Execution (UCSE)

The first issue of applying UCSE to Android Framework is
that virtual function calls are frequently used in the frame-
work code, but the runtime types of the receiver objects are
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unknown. UCSE constructs the receiver objects based on the
type hierarchy or manual specifications, which either
explores spurious paths or requires much manual effort.

The second issues is that input variables which are treated
as concrete inputs in CENTAUR are treated as symbolic inputs
in UCSE. E.g., LocationManagerService.mProviders
in Fig. 1 is an ArrayList instance that stores the geographical
location providers. It is a non-app-specific variable, and is
treated as a concrete input in CENTAUR by migrating its value
from the heap snapshot. But UCSE treats such variables as
symbolic inputs and handles them using lazy initialization,
which causes the following problems: (1) loops that iterate
through collection data structures are unbounded, and (2)
the generated concrete values of such variables may be unre-
alistic and difficult to interpret.

We tried to perform UCSE of Android Framework using
Symbolic PathFinder, which kept crashing when it was
applied directly. We spent a lot of time and effort modifying
the framework code (e.g., adding the type information about
objects pointed to by references to assist dynamic dispatch-
ing) to make UCSE possible. We thus only modified the code
with respect to the getProviders API and startActi-

vityUncheckedLocked API (related to task hijacking
attacks described in Section 8.4). UCSE spent 138m when
analyzing getProviders and ran out of memory in the
case of startActivityUncheckedLocked, while CEN-

TAUR finished themwithin 26s and 42m37s, respectively.
Thus, path exploration without precise information of the

execution context causes many problems. CENTAUR resolves
the problems by migrating the execution context from the
concrete executionworld to the symbolic executionworld.

8.3 Investigating Inconsistent Security
Policy Enforcement (ISPE)

8.3.1 Background

Android Framework utilizes a permission-based security
model, which provides controlled access to various system
resources. However, a sensitive operation may be reached
from different paths, which may enforce security checks
inconsistently. As a result, an attacker with insufficient priv-
ilege may perform sensitive operations by taking paths that
lack security checks. Recently, static analysis combined
with manual code inspection has been applied to finding
such inconsistent security enforcement cases in Android
Framework [56]. The system, called Kratos, first builds a call
graph based on the framework code. With the call graph, it
finds all the paths that can reach sensitive operations, and
then compares these paths to identify paths that reach the
same sensitive operation with inconsistent security checks
enforced, and reports them as suspect ISPE vulnerabilities.

8.3.2 Combined Approach for Bug Finding

While static analysis is very scalable, it is well known that
the analysis results may be imprecise. In the case of finding
ISPE bugs, static analysis based on the reachability analysis
may report false positives, as some paths are infeasible in
real executions. Currently, manual effort is used to scruti-
nize the code, which is laborious and tedious; moreover, it
is difficult to verify the correctness of the manual inspection
results.

We propose to combine static analysis and symbolic exe-
cution to find ISPE bugs. For each suspect vulnerability
reported by static analysis, CENTAUR (1) finds all feasible
paths that reach the sensitive operation, (2) gives permis-
sions needed for each feasible path (the needed permissions
are included in each path condition), (3) verifies permission
consistency among the feasible paths, and (4) generates
inputs that exercise the feasible paths to verify suspect vul-
nerabilities. All the steps are performed automatically, in
contrast with the previous work that relies on tedious and
error-prone manual inspection. Plus, zero false positives are
guaranteed as all suspect vulnerabilities are validated.

Skeleton App. We use a skeleton app to act as the malicious
app; it contains all the aspects of a regular app, including the
manifest file, activities, and services, but does not implement
specific functionalities. Specifically, the skeleton app borrows
the manifest file from the Android developer website, which
has “every element that it can contain” [30]. In practice, the ana-
lyst can instead choose any app as themalicious app.

Result Summary. Table 3 summarizes the experiment
results for Android Framework 5.0 (the vulnerability shown
in the last row is discussed in Section 8.4). We also examined
each vulnerability on Android Framework 9.0; due to space
limit, we omit the table showing the results. In Android
Framework 9.0, all the vulnerabilities, except the third one,
still exist. Android 9.0 has fixed the third vulnerability: the
same permission, MODIFY_PHONE_STATE, is required by
the two entrypoints. For each vulnerability, the table lists the
vulnerability description, entrypoint(s), the min/max num-
ber of migrated classes among different paths, the min/max
number of migrated objects among different paths, the num-
ber of sets of concrete values generated (“—”means it can be
exploited unconditionally; note that we generate one set of
concrete values for each unique path explored), the number
of sets that can be used to generate exploits, the symbolic exe-
cution time, and the code coverage.

Given an entrypoint method, there may be multiple paths
that can reach the sensitive operation, and the classes and
objects involved in the paths may vary, as illustrated by the
min/max number of migrated classes and objects. Note that
when migrating a class, all its super classes are also
migrated, which is the reason the number ofmigrated classes
is larger than that of objects. For most cases, the symbolic
execution of an entrypointmethod is finishedwithin less one
minute. Note that in some cases we have a relatively low
code coverage, e.g., in WSI.addOrUpdateNetwork(); it is
mainly because branches that rely on non-app-specific varia-
bles are not explored, as we consider those variables as con-
crete inputs. We are only interested in branches that can be
affected by the variables derived from themalicious app.We
regard this (i.e., lower code coverage due to only exploring
branches depending on app-specific variables) as an advan-
tage for improving the analysis scalability and speed, but
also discuss its limitation in Section 10.

New Findings. It is notable that some of our results are
inconsistent with those of Kratos. First, for the fifth vulnera-
bility in Table 3, Kratos reports that it does not exist in
Android Framework 5.0, while CENTAUR shows that it still
exist in the version 5.0 and 9.0 (i.e., different permissions
are required by the two system interface methods for reach-
ing the sensitive resource) and the result is verified by the
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log. Second, for the sixth vulnerability in Table 3, Kratos
reports only one permission CONNECTIVITY_INTERNAL

for invoking NsdService.setEnabled, while CENTAUR

reports two permissions, CONNECTIVITY_INTERNAL and
WRITE_SETTINGS. The more thorough and accurate results
demonstrate the advantages of the hybrid approach.

8.3.3 Symbolic Execution within a Single Process

As an example, we describe how the combined approach
was applied to investigating the first vulnerability in Table 3.
All involved method calls are performed in the system_

server process. (1) First, the static analysis based on
path reachability and pairwise path comparison finds that
both getProviders() and getAllProviders() (in the
LocationManagerService class) have paths reaching
the same sensitive operation that returns the names of the
installed GPS providers, and the two paths can be executed

with inconsistent permissions; thus, it is a suspect vulnera-
bility. (2) Next, CENTAUR is applied to automatically checking
whether there exist feasible paths that can reach the sensitive
operation from the two service interfacemethods.

Entrypoint 1: getProviders(). Fig. 9 shows the sub-call
graph rooted at this entrypoint with collection and string
operations omitted. It leads to invocation of multiple meth-
ods of other services, e.g., ActivityManagerService and
PackageManagerService. These services run in the same
process, so are handled as ordinary method calls using the
runtime type information in the execution context.

Four native methods are involved: getCallingUid(),
getCallingPid(), native_get_long(), and getuid

(). Calls to the methods are intercepted using MJI and are
redirected to our handlers of these methods. The first two
return the UID and PID of the client app, respectively, and
getuid() returns UID ¼ 1000, which is the UID of the
system_server process. The call to native_get_long

is delegated back to the Android system through RPC.
Fig. 10 shows two sets of generated concrete values. The

variable mUserIds.array[54] is identified as a symbolic
input through slim tainting during symbolic execution (in
this example, the app’s UID is 10,054; 54 is due to the formula
ðuid%100; 000� 10; 000Þ presented in Section 4.3). Take the
first set as an example; it provides clear information for
building an app in terms of how to configure the app (i.e.,
requiring the ACCESS_FINE_LOCATION permission) and
prepare the parameter values (i.e., criteria and enable-

dOnly) for invoking the entrypoint method in order to exer-
cise the path that reaches the sensitive operation.

Entrypoint 2: getAllProviders(). The generated path
condition is constantly true, which means this method can
be invoked with no permissions needed.

As the needed permissions required by the two entry-
points differ, it is identified as an ISPE vulnerability.

8.3.4 Symbolic Execution Involving Multiple Processes

We now describe how CENTAUR was applied to analyzing
multiple processes, using the second vulnerability in Table 3

TABLE 3
List of Vulnerabilities and Analysis Statistics

(LMS, TSI, PIM, WMS, AMS, WSI, NS, and ASS represent LocationManagerService, TelecomServiceImpl, PhoneInterfaceManager, WindowManagerService,
ActivityManagerService, WifiServiceImpl, NsdService, and ActivityStackSupervisor, respectively.)

Fig. 9. Sub-call graph rooted at getProviders(). (LMS, AM, AMS,
and PMS represent LocationManagerService, ActivityMan-

ager, ActivityManagerService, and PackageManagerService,
respectively. The gray nodes denote native methods.)
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as an example.5 Starting from Android 4.4, the Telecom

service runs in the com.android.server.telecom

process, rather than the system_server process. Again,
the combined approach is applied in two steps. (1) First,
the static analysis based on path reachability and pairwise
path comparison finds that getCallState(), isInCall
(), and isRinging() (in the TelecomServiceImpl

class) have paths reaching the sensitive operation that
returns the current phone state. (2) Second, CENTAUR is
applied to automatically checking whether there exist feasi-
ble paths that can reach the sensitive operation from the
three methods.

Entrypoint 1: isInCall(). Fig. 11 shows the sub-call
graph rooted at isInCall() with collection and string
operations omitted. It invokes a service method (nodes 10
and 11) of ActivityManagerService running in the
system_server process; thus, the invocation is made via
Binder. To avoid interpreting the Binder mechanism (see
Section 6.2), CENTAUR handles the inter-process service call as
follows. First, the reference variable that points to a Proxy

object, which is used to invoke ActivityManagerSer-

vice, is set to a reference value that points to ActivityMa-
nagerService. Second, when the reference variable is
used, ActivityManagerService object is migrated to the
symbolic execution world; after that, the service method
checkPermission of ActivityManagerService is
handled as an ordinary function call. In effect, the call on the
Proxy object (node 10) is skipped, and node 7 is directly con-
nected to node 11.

The generated concrete value is showed below. It pro-
vides information on how to configure the app, i.e., requir-
ing the READ_PHONE_STATE permission.

(mUserIds.array[54].grantedPermissions.

backingMap.table[1].key==permission.

READ_PHONE_STATE)

//output: false

Entrypoint 2: isRinging(). The result of analyzing
isRinging() is the same as that of isInCall().

Entrypoint 3: getCallState(). The generated path
condition is constantly true, which means this method can
be invoked with no permissions needed.

As the needed permissions required by the three entry-
points differ, it is identified as an ISPE vulnerability.

Summary. Compared to previous work that relies on
tedious and error-prone manual inspection, the approach
combining call graph reachability analysis and symbolic exe-
cution eliminates the need for manual work and guarantees
zero false positives. It is potential to apply this approach to
finding other types of vulnerabilities in Android Framework.

8.4 Investigating Task Hijacking Attacks

8.4.1 Background

The Activity Manager Service allows activities of different
apps to reside in the same task, which is a collection of activ-
ities that users interact with when performing a certain job.
The activities in a given task are arranged in a back stack,
pushed in the order they were opened; users can navigate
back using the “Back” button. This feature can be exploited
by a malicious app if its activities are manipulated to reside
side by side with the victim apps in the same task and hijack
the user sessions of the victim apps.

This is a design flaw rather than a program bug, but can
be exploited to implement UI spoofing, denial-of-service,
and user monitoring attacks [54]. E.g., a malicious app may
start a malicious activity that impersonates the victim activ-
ity, and the UI spoofing attack succeeds if the fake activity
resides in the same back stack as the victim activity, and the
user may mistake the fake malicious activity for the victim
one. This case illustrates unique characteristics of exploits
that take advantage of Android Framework vulnerabilities:
the malicious “input” is not some single input (e.g., a command
parameter, a network packet, etc.), but a whole app.

8.4.2 Vulnerability Discovery

We use the EditEventActivity activity of the calen-

dar app as an example victim activity. In the skeleton app,
the main activity starts the malicious activity, denoted as
M. The goal of the attack is that M, when it is started, will
reside in the same task as the victim activity. A bug is identi-
fied if such attacks against the victim activity is feasible. We
capture the heap memory snapshots when the victim app
and the skeleton app are started and the main activity of the
skeleton app is to start the malicious activity.

Fig. 10. Examples of concrete input values generated for the first vulner-
ability Table 3.

Fig. 11. Sub-call graph rooted at isInCall(). (TSI, AMN, AMP, AMS,
and PMS represent TelecomServiceImpl, ActivityManagerNa-
tive, ActivityManagerProxy, ActivityManagerService, and
PackageManagerService, respectively. The blue area denotes an
IPC service call made through Binder.)

5. In [44], we used much manual effort to handle multiple processes.
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While the method for starting an activity is startAc-

tivity, the task selection is done in startActivityUn-

checkedLocked, which is invoked by startActivity.
We thus performed the symbolic execution of startActi-
vityUncheckedLocked to simplify the path exploration; it
has eight parameters as shown in Fig. 12. The first parameter
r is an ActivityRecord instance storing the information
of M, while the second storing that of the caller activity. The
description of other parameters is omitted. They are set
to symbolic inputs. The constraint indicating that the task
selected for M is exactly the one hosting the victim activity is
added to each of the path conditionswhen it is to be resolved;
that is, hm:task:taskId ¼¼ v:task:taskIdi, wherem and v rep-
resent the activityRecords of the malicious activity and
the victim activity, respectively. A feasible path is found if
the path condition is resolvable.

8.4.3 Exploit Generation

The symbolic execution generated 2,020 sets of concrete
input values (each set corresponds to a unique path), among
which some contain illegal concrete values, e.g., due to
requiring the malicious activity’s package name and activity
name to be equal to those of the victim activity. Simple
scripts were written to filter out illegal concrete values (1,210
sets totally). Fig. 13 shows an example of legal concrete val-
ues. In this example, r.intent.mFlags and options (whose type
is Bundle) guide how to set the two parameters of star-
tActivity(Intent, Bundle), respectively, and others
instruct how to configure the malicious activity; e.g., r.
launchMode is mapped to the android:launchMode in
the manifest file. Fig. 14 shows the exploit generated accord-
ing to the set of concrete values, and it has verified that the
exploit can be used to launch task hijacking successfully.

We then examined whether the exploits generated on
Android 5.0 were effective on other versions of Android sys-
tems. Table 4 lists the results, which show that the effective-
ness of the exploits are affected by the versions of Android
systems. Further investigation has revealed that the difference
is mainly caused by code changes. For example, the new
exploiting condition FLAG_ACTIVITY_NEW_DOCUMENT is
not introduced until Android 5.0 (discussed below); the
startActivity(Intent, Bundle)API is not included in
version 4.0, and thus only exploits with options == null

can be used for invoking startActivity(Intent). For

Android 9.0, a new variablematchedByRootAffinity is
introduced to control whether or not the vulnerability can be
exploited, causing some exploits generated in Android 5.0
ineffective inAndroid 9.0.

Newly Discovered Exploiting Condition. The path condi-
tions generated from symbolic execution reveal an extra
exploiting condition (requiring a specific bit in the bitflags
r:intent:mFlags to be 0) that was not reported in previous
work [54]. Compared to previous work that relies on ad hoc
manual effort for discovering the exploiting conditions, CEN-

TAUR finds them in a systematic and automatic way.

8.5 Consistency of Exploits with Different
Snapshots

We then investigated whether snapshots captured at diff-
erent times affected exploit generation. After the system
was initialized, 20 snapshots were captured at intervals of
5 minutes on Android 5.0 with random user interactions
during the intervals. For each vulnerability listed in Table 3,
symbolic execution was performed with each of the 20 snap-
shots providing the execution context. The results show that,
for each vulnerability, the same sets of path conditions were
generated with different snapshots, which means that the
resulting exploits with the different snapshots are consistent.

There are several reasons that explain the consistency of
exploits. First, if a malicious app does not rely on other apps
to exploit a vulnerability (e.g., inconsistent security policy
enforcement), access control is enforced in the framework to
make sure the information of other apps is not accessed.
Thus, the configurations and statuses of other apps do not
affect the path exploration. On the other hand, for exploits
that rely on the statuses of other apps (e.g., the victim app
in task hijacking attacks), the path exploration may depend
on the statuses of other apps; hence, during symbolic execu-
tion, reasonable setting up is established consistently; e.g.,
in the task hijacking case, the victim activity should already
be started prior to capturing snapshots. The results show
that an attack succeeds as long as the same statuses recur.

Finally, recently revealed attacks that exploit the frame-
work do not rely on system-specific configurations. Take
the ISPF vulnerability that accesses the names of installed

Fig. 12. startActivityUncheckedLocked().

Fig. 13. An example set of concrete input values for task hijacking.

Fig. 14. Task hijacking exploit example.

TABLE 4
Effectiveness of the Generated Exploits

on Different Android Versions

Android version 4.0 4.1 4.2 4.3 4.4 5.0 9.0
# of effective exploits 434 674 674 674 702 810 734
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GPS providers as an example; the exploit does not depend
on the concrete values of the related non-app-specific
variable (i.e., LocationManagerService.mProviders),
although different provider names may be returned by the
service calls when different providers are installed.

9 RELATED WORK

Concrete-Execution-Assisted Symbolic Analysis. DART is the
first concolic testing tool that uses symbolic analysis in con-
cert with concrete execution to improve code coverage [27].
It runs the tested unit code on random inputs and symboli-
cally gathers constraints at decision points that use input
values; then, it negates one of these symbolic constraints to
generate the next test case. DART [27], EXE [9], and S2E [15]
all use concrete execution to handle uninterpreted functions
(e.g., system calls). In CENTAUR, concrete execution is not only
used for handling uninterpreted functions (i.e., JNI calls),
but also for the initialization of Android Framework in order to
obtain the execution context for symbolic execution.

Switching Concrete Execution to Symbolic Execution. Sym-
bolic PathFinder begins with concrete execution and can
switch to symbolic execution at any point in the pro-
gram [49]. S2E can also start with concrete execution and
then selectively analyze a function of interest; compared to
SPF, it allows specifying the symbolic inputs initially and
then gathers constraints during concrete execution. Due to
the complexity of Android Framework, it is difficult to
track the symbolic data derived from the target app
throughout its initialization phase. We propose slim tainting
to identify variables derived from the target app as symbolic
inputs on the fly during symbolic execution. It is a novel sym-
bolic analysis approach to handling such complex middleware as
Android Framework.

Vulnerability Discovery and Exploit Generation via Symbolic
Execution. Many systems demonstrate that symbolic execu-
tion is useful for finding vulnerabilities from Windows
programs [27], Linux/Unix programs [8], [9], [15], Java pro-
grams [50], firmware [22], [65], while CENTAUR demonstrates
it on a large piece of middleware. Many challenges such as
handling analysis scalability and complex features of the
framework code arise and are overcome in CENTAUR. AEG
performs exploit generation given vulnerable Unix pro-
grams [4]. APEG generates exploits based on information in
patches [7]. Instead of generating an exploit as a network
packet, a string, or a parameter value, in our casewe consider
an exploit as a whole malicious application consisting of not
only the exploit code but also its configuration file.

Symbolic Execution of Android Apps. There has been a lot of
work that performs symbolic execution of Android apps for
test input generation or security purposes [1], [37], [46], [47],
[52], [63], [64], [68]. E.g., Anand et al. proposed a system
based on concolic testing for generating screen tap events to
exercise Android apps [1]. Jensen et al. proposed to use con-
colic execution to build summaries of event handlers and
generate event sequences backward, to find event sequences
that reach a given target line of code in an Android app [37].
SIG-Droid combines program analysis techniques with sym-
bolic execution to generate event sequences [46]. Compared
to analyzing applications, the analysis of the framework code
raises many unique challenges, which require new insights,

ideas and techniques. To our knowledge, CENTAURis the first
that supports symbolic execution of Android Framework.

Analysis of Android Framework. Analysis of Android
Framework has been very limited. Prior work has performed
fuzzing [10], [26], [35] and some static analyses of the frame-
work code [3], [5], [6]. They are used for applications such as
inferring the Android permission specification and probing
system services; however, more powerful analysis capa-
bilities, such as symbolic execution, are absent. There is also
work that generates summaries/syntheses of Android
Framework APIs for the purpose of, e.g., taint analysis or
symbolic execution ofAndroid apps [2], [24], [59], or investiga-
tion of ICC based attacks [14], [21], [42]. None is able to per-
form symbolic analysis of Android Framework. Indeed, the
literature has recognized the prominent challenges for sym-
bolically executing Android Framework; e.g., Jeon et al.
pointed out that “Frameworks are large, complicated” and
turned to synthesize the framework behavior to facilitate
symbolic execution of apps [38]. CENTAUR takes a big step
towardsmore in-depth analysis of Android Framework.

10 DISCUSSION

CENTAUR is shown to be effective for discovering two distinct
types of vulnerabilities in Android Framework and generat-
ing PoC exploits. The reason we chose ISPE and task-
hijacking vulnerabilities as the examples is that they are
both due to high-level logic errors and design flaws, which
have been less explored by the research community.
Besides, it is potential to apply CENTAUR to discovering other
common bugs, such as BufferOverflowException and
NullPointerException. Moreover, CENTAUR can be used
to generate test inputs (e.g., unusual apps) for testing the
system services.

A lot of work performs symbolic execution of Android
apps for test input generation or security purposes [1], [37],
[46], [47], [52], [63], [64], [68]. As apps frequently interact
with the framework, one challenge for such tasks is to deal
with the complex framework code. To handle this, existing
work either models the framework APIs by synthesizing
the framework behavior, which is time consuming and error
prone, or simply sets the return values of a framework API
as symbolic variables, which introduces significant impreci-
sion. Thus, an interesting solution may be cross-layer sym-
bolic execution that integrates our technique and these
systems for more precise analysis.

CENTAUR performs symbolic execution of bytecode, and
does not rely on the availability of source code. Its migration
algorithm is not to simply copy raw data (i.e., the bytes)
from the heap snapshot to the symbolic executor; instead, it
has an anatomical view of the heap when copying the
objects and their fields, and properly updates the reference
fields. Thus, the migration algorithm works for all versions
of Android.

Limitations. CENTAUR uses the concrete values of the non-
app-specific variables during path exploration. This avoids
exploringmany paths unnecessarily, such that it could attain
a high scalability. But it may introduce false negatives, as
other values of those non-app-specific variable are not
considered. In some attack scenarios, attackers may exploit
certain system settings, which lead to different values for
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non-app-specific variables. To investigate such attacks, we
suggest researchers capture multiple heap snapshots under
different settings for multiple rounds of analysis or consider
related non-app-specific variables as symbolic.

The access patterns were found via manual code review
(Section 4.3). We did not analyze all the framework code,
and consider the access patterns as incomplete heuristic.
We plan to explore a systematic way of analyzing all the
framework code to verify the found access patterns as
future work.

The creative combination of concrete execution and sym-
bolic execution allows the analysis to start from any of the
framework APIs, rather than tackling the millions of lines of
code as a whole; thus, the path explosion problem is greatly
mitigated. A follow-up question is how to find the APIs that
can reach the target of the attack under investigation. This
can be done either by static program analysis (e.g., ISPE
vulnerability) or based on expert knowledge (e.g., task-
hijacking vulnerability). Like our work, other symbolic exe-
cution methods that begin with concrete execution and then
switch to symbolic execution when a function of interest is
triggered also assume the function is known by the security
analysts [15], [49].

11 CONCLUSIONS

Wehave introduced the first system, called CENTAUR, for sym-
bolic execution of Android Framework. To improve the anal-
ysis scalability, instead of analyzing the framework as a
whole, we propose to analyze the system service interface
methods separately; moreover, a proper execution context is
provided to avoid under-constrained symbolic execution.
Among the large number of variables in the execution con-
text, slim tainting is proposed to precisely identify variables
derived from the malicious app as symbolic inputs, which
benefit the analysis completeness and scalability. In order to
decouple the implementation of CENTAUR from Android, the
execution context provided by concrete execution ismigrated
from the Android system to the symbolic executor. More-
over, CENTAUR is able to handle many unique features of the
framework for precise symbolic execution, such as inter-
process service calls and messaging. We have implemented
the system and evaluated it. The evaluation shows that
CENTAUR is very effective in both vulnerability discovery and
exploit generation. Given that symbolic execution has proven
to be a very useful technique, CENTAUR can also be applied to
automatic API specification generation, fine-grained mal-
ware analysis, and testing.
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