
Kimberly Redmond, Lannan (Lisa) Luo, Qiang Zeng
University of South Carolina

A Cross-Architecture Instruction
Embedding Model for Natural Language

Processing-Inspired Binary Code Analysis

Closed-Source Software
• When using proprietary software, often we are only left

with binaries

• Software on embedded devices (firmware) is usually
closed-source

• Binary code analysis is an important method for analyzing
programs through their binaries. It can be applied to tasks,
such as code plagiarism detection, vulnerability discovery,
and malware detection

2

Software is increasingly cross-compiled for
various architectures

3

… …

Our Insight

4

x86
x86 assembly

language

Binary code analysis can be approached by borrowing
ideas and techniques of Natural Language Processing.

NLP:
•  words à word embeddings (i.e., high-dimensional vectors)

NLP-inspired binary code analysis:

•  instructions are regarded as words
•  instruction à instruction embeddings

Background: Word Embeddings
• Word embeddings are high-dimensional vectors that

encode word meanings

• One-hot encoding: Given a dictionary of 100 words, each
word occupies one dimension out of 100 in an all-0 vector

 Cat = [1 0 0 0 0 …] Bird = [0 0 1 0 0 …]

 Dog = [0 1 0 0 0 …] Pig = [0 0 0 1 0 …]

But this does not tell us how words are similar or different

5

Background: Word Embeddings

•  To reflect what words mean,
dimensions will instead encode
patterns of how words are
distributed across texts

•  Insight: if two words tend to

appear in the same contexts,
then the two words probably
share the same meaning

6

Background: Multilingual Word Embeddings

• Multiple human languages

• Various multilingual NLP tasks

• Multilingual word embedding
models learns word
embeddings such that: similar
words in different human
languages have similar
embeddings

7

Cross-Architecture Binary Code Analysis

8

x86
x86 assembly

language

NLP-inspired binary code analysis:

•  instructions are regarded as words
•  instruction à instruction embeddings

Cross-architecture binary code analysis:
•  instruction à cross-architecture instruction embeddings
•  similar instructions from different arch. have similar embeddings

ARM
ARM assembly

language

Motivation

All ARM and x86 instructions; if the
embeddings are trained separately

All ARM and x86 instructions; if the
embeddings are trained jointly

Potential Applications
• Code similarity comparison:

•  Summing up all the embeddings of instructions in a function/basic
block, and using the sum to represent the function/basic block for
similarity comparison

•  Some previous work based on deep learning (e.g.,
InnerEye[NDSS’19], Arm2Vec[S&P’19], i2V-RNN[BAR’19]) use
complex neural network models, such as LSTM, structure2vec

•  Transferability:
•  Training a classifier using the code of x86, and directly applying the

classifier to the code of ARM

• ……

10

Our Training Approach

•  We adopt the BiVec model, a multilingual word embedding model.

•  Finding the alignment links: simply assume linear alignments
•  Each instruction in one sequence M at position i is aligned to the

instruction in another sequence N at position ⌈i×|N|/|M|⌉
•  E.g., M = {u1, u2, u3, u4}, N = {v1, v2, v3}, the alignment links: u1<->v1;

u2<->v2; u3<->v3; u4<->v3;

11

callq foo moveq [rip+<tag>],rax testq rax,rax je <tag>

bl foo str r0,[r7] cmp r0,0 beq <tag>

Evaluation
• Dataset: 202,252 semantically similar basic blocks

generated by our another work [1]

•  Two types of experiments:

•  Instruction similarity tasks:
•  Mono-architecture instruction similarity task
•  Cross-architecture instruction similarity task

•  Cross-architecture basic-block similarity comparison task

12

[1] “Neural Machine Translation Inspired Binary Code Similarity Comparison
beyond Function Pairs,” NDSS’19

Mono-Architecture Instruction Similarity Task

•  100 instruction pairs were
randomly chosen and
labeled (50 similar, 50
dissimilar). This was
determined by opcodes.

• Cosine similarity
•  ARM AUC = 0.82

X86 AUC = 0.74

13

Cross-Architecture Instruction Similarity Task

14

•  50 pairs of instructions
across architectures were
randomly chosen and
labeled (25 similar, 25
dissimilar). Again, opcodes
were used to decide this.

•  AUC = 0.72

•  The results are good, but an
advanced way of finding
alignment links between
instrcutions would improve
the results.

Cross-Architecture Basic-Block Similarity Test

15

[1] “Neural Machine Translation Inspired Binary Code Similarity Comparison beyond
Function Pairs,” NDSS’19

•  90% of similar basic block pairs
for training

•  10% of similar block pairs and
another 20,633 dissimilar pairs
(selected from [1]) for testing

•  Summation of all instruction
embeddings to represent a block
•  AUC = 0.90

•  Recent work (such as Gemini in
CCS’17) uses manually selected
features to represent a basic
block; a SVM classifier based on
such features can only achieve
AUC = 0.85

T-SNE Visualizations

Visualization of five ARM and x86 instruction pairs. A blue circle and
red triangle represent an ARM and x86 instruction, respectively

Summary
•  The first work discusses cross-architecture instruction

embeddings

•  We build the cross-architecture instruction embedding model,
such that similar instruction, regardless of their architectures,
have embeddings close together in the vector space

•  We conduct various experiments to evaluate the quality of the
learned instruction embeddings

•  The proposed model may be applied to many cross-
architecture binary code analysis tasks, such as vulnerability
finding, malware detection, and plagiarism detection

17

18

https://github.com/nlp-code-analysis/cross-arch-instr-model

