
System Service Call-oriented Symbolic Execution of
Android Framework with Applications to Vulnerability

Discovery and Exploit Generation

Lannan Luo†
∗
, Qiang Zeng‡

∗
, Chen Cao§, Kai Chen§[, Jian Liu§[,

Limin Liu§[, Neng Gao§[, Min Yango, Xinyu Xing†, and Peng Liu†

†The Pennsylvania State University, USA
‡Temple University, USA

§SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences
[School of Cyber Security, University of Chinese Academy of Sciences

oFudan University, China
{lzl144, xxing, pliu}@ist.psu.edu, {qzeng}@temple.edu,

{caochen, chenkai, liujian6, liulimin, gaoneng}@iie.ac.cn, {m_yang}@fudan.edu.cn

ABSTRACT
Android Application Framework is an integral and founda-
tional part of the Android system. Each of the 1.4 billion
Android devices relies on the system services of Android
Framework to manage applications and system resources.
Given its critical role, a vulnerability in the framework can
be exploited to launch large-scale cyber attacks and cause
severe harms to user security and privacy. Recently, many
vulnerabilities in Android Framework were exposed, show-
ing that it is vulnerable and exploitable. However, most of
the existing research has been limited to analyzing Android
applications, while there are very few techniques and tools
developed for analyzing Android Framework. In particular,
to our knowledge, there is no previous work that analyzes
the framework through symbolic execution, an approach that
has proven to be very powerful for vulnerability discovery
and exploit generation. We design and build the first system,
Centaur, that enables symbolic execution of Android Frame-
work. Due to some unique characteristics of the framework,
such as its middleware nature and extraordinary complexity,
many new challenges arise and are tackled in Centaur. In
addition, we demonstrate how the system can be applied
to discovering new vulnerability instances, which can be
exploited by several recently uncovered attacks against the
framework, and to generating PoC exploits.

Keywords
Symbolic execution; concolic execution; vulnerability discov-
ery; exploit generation; Android Framework

∗These two authors have contributed equally.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MobiSys’17, June 19-23, 2017, Niagara Falls, NY, USA
© 2017 ACM. ISBN 978-1-4503-4928-4/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3081333.3081361

1. INTRODUCTION
The global smartphone market is booming and Android

dominates the market with a share of 87.6% [30]. As of
2016, there were 1.4 billion active Android devices [52] and
over 65 billion Android apps that had been downloaded
and installed [49]. An Android app relies on the Android
Application Framework (Android Framework, for short) to
make it useful. For example, all the user interface designs
and multi-tasking features would not work without WMS
(Window Manager Service) and AMS (Activity Manager Ser-
vice) provided by Android Framework; as another example,
apps cannot obtain the GPS location without LMS (Loca-
tion Manager Service) of the framework. Therefore, Android
Framework is an integral and foundational part of the An-
droid system; it runs on each Android device for managing
all applications and providing a generic abstraction for hard-
ware access [26]. Recently, many vulnerabilities in Android
Framework were identified [16, 17, 19, 18]. A vulnerability
in the framework can lead to large-scale cyber attacks and
cause serious harms to user security and privacy. For exam-
ple, malicious apps can exploit such vulnerabilities to steal
user passwords, take pictures in the background, launch UI
spoofing attacks, and tamper with user data [45, 47, 48].

Despite the critical role of Android Framework and the
security concerns due to the vulnerabilities hidden in its
several million lines of code, most of the existing work has
been focused on analyzing Android applications [20, 3, 13, 35,
39, 34, 44, 21, 56, 10, 11, 36, 12, 55, 53]. Very few systems
and tools are available for analyzing Android Framework [4,
23, 6]; as a result, the insecurity analysis of the framework has
been imprecise and/or requires significant manual effort [47,
45]. For example, Shao et al. [47] uncovered a very interesting
type of Android Framework vulnerabilities that are due to
inconsistent permission checking (detailed in Section 7.2);
however, due to the overwhelming amount of manual effort
needed to validate their findings, the process of vulnerability
discovery was tedious and error-prone; moreover, the reported
vulnerabilities were hard to verify since no PoC exploits were
provided. Thus, there is an urgent need for techniques and
tools for precise and automated insecurity analysis of Android
Framework. In particular, to our knowledge, there is no

225

http://dx.doi.org/10.1145/3081333.3081361

Figure 1: The getProviders service interface method.

1 // Defined in the LocationManagerService class
2 List<String> getProviders(Criteria criteria,

boolean enabledOnly) {
3 int uid = Binder.getCallingUid();
4 int level = getAllowedResolutionLevel(uid);
5 ArrayList<String> out = new ArrayList<String>();
6 for (LocationProviderInterface p : mProviders) {
7 if(level >= p.requriedLevel) {
8 ...
9 out.add(p.name);

10 }
11 }
12 return out;
13 }
14 int getAllowedResolutionLevel(int uid) {
15 // Inside checkPermission(), the function

getUserIdLPr() is invoked
16 HashSet ps = mContext.checkPermission(uid);
17 if(ps.contains(ACCESS_FINE_LOCATION))
18 return 2;
19 else if (ps.contains(ACCESS_COARSE_LOCATION))
20 return 1;
21 else
22 return 0;
23 }
24

25 // Defined in the Settings class
26 static final int FIRST_APPLICATION_UID = 10000;
27 static final int PER_USER_RANGE = 100000;
28 ArrayList<Object> mUserIds;
29 Object getUserIdLPr(int uid) {
30 if (uid >= FIRST_APPLICATION_UID) {
31 uid %= PER_USER_RANGE;
32 int index = uid - FIRST_APPLICATION_UID;
33 return mUserIds.get(index);
34 }
35 }

tool that is able to analyze the framework through symbolic
execution, a precise and automated analysis approach that
has proven to be very powerful for automatic vulnerability
discovery and exploit generation [5, 9, 25].

This work is to fill the critical gap, aiming to (1) design
and build a system that enables symbolic execution of the
Android Framework code, and (2) given the description of
a new type of attacks exploiting Android Framework, apply
the system to precisely and automatically finding zero-day
vulnerability instances and generating PoC exploits to vali-
date the findings; such exploits can also be fed into defense
systems for automated malware signature generation [5, 15].

While many symbolic execution systems have been pro-
posed for analyzing Windows programs [24, 25, 7], Unix
programs [5, 9, 8], and Android apps [38, 1, 31, 37, 54], none
has explored how to effectively analyze such complex middle-
ware as Android Framework. Due to unique characteristics
of Android Framework, many new challenges arise when
building its symbolic execution system.

First, most of the existing systems target stand-alone exe-
cutables and start analysis of the code from the main function,
while Android Framework is a large piece of middleware with
a very complex initialization phase, which parses system
and app settings and then prepares all the system services.
Symbolic execution that starts from the main entry of An-
droid Framework, SystemServer.main, would quickly cause

state explosion and hence cannot reach deep code paths. On
the other hand, Android Framework exports system services
to apps in the form of a large number of service interface
methods (also called entrypoint methods); e.g., in Android
Framework 5.0, there are 3,079 entrypoint methods exported.
Our insight is that, instead of analyzing Android Frame-
work as a whole, the capability of analyzing each entrypoint
method separately is the key to the scalability of the analysis.

However, if the analyzer skips the initialization phase
and directly analyzes a service interface method, the context
information, such as the type and value of variables, is missing
and thus many problems may be caused, as is the case in
Under-Constrained Symbolic Execution (UCSE) [42, 22, 43].

For example, Figure 1 shows the code for the service in-
terface method getProviders,1 which returns the names of
the GPS providers that the calling app is allowed to access.
Line 16 contains a virtual function call to checkPermission

through mContext, a reference variable of the Context type;
Context is an abstract class extended by four classes, in-
cluding ContextWrapper, ContextImpl, BridgeContext, and
MockContext, each of which implements the function check-

Permission. Without the concrete type information of the
object pointed to by mContext, it is hard to precisely deter-
mine the dispatch target of the call. Such virtual function
calls prevail in the framework code.

Similarly, without the value information of variables, the
state explosion problem can be exacerbated. For example,
consider mProviders in Line 6 as an example, which is an
ArrayList that stores the currently installed GPS providers;
if the elements in the list are unknown, it is difficult to carry
out a loop that iterates through the list. One workaround is
to regard the list as a symbolic input and then handle it using
lazy initialization [32]; this way, however, the loop becomes
unbounded and elements of the list become symbolic, which
unnecessarily exacerbates the state explosion problem.

Therefore, while it increases the scalability of analysis by
symbolically executing each service interface method sepa-
rately, how to deal with the situation of the missing context
information is a challenging problem (C1). To resolve it, we
employ an analysis scheme that combines concrete execution
and symbolic execution, allowing analysis to start from an
arbitrary middleware API method (Section 3).

Second, Android Framework contains a large number of
data structures maintained for both system services and apps.
From the perspective of finding vulnerabilities exploitable
by a malicious app, variables that are derived from the
malicious app are under control of attackers, and thus should
be specified as symbolic inputs, such that branches depending
on them are all explored during the analysis. However, given
a malicious app, the variables derived from it scatter in the
form of object fields and array elements in numerous data
structures.

In Figure 1, for example, mUserIds at Line 28 is an Ar-
rayList that stores the information of all the installed apps
with one element for each app. The object pointed to by ps

at Line 16 is an element of mUserIds (Line 33); the object is
derived from the calling app and thus should be handled as
a symbolic input, such that all the branches in the function
getAllowedResolutionLevel will be explored by consider-
ing different values of the object. While it is not difficult
to identify variables derived from the calling app once one

1The code snippet has been modified slightly from the origi-
nal to ease the understanding.

226

understands the program logic, how to automate the pro-
cess, given the large number of complex data structures in
the framework, is an intriguing new problem as well as a
challenge (C2).

Our hypothesis is that, as the framework stores informa-
tion for multiple clients (i.e., apps), there must exist fixed
patterns used to access the client-specific information when
the framework services a client call, and this hypothesis is
validated through our investigation. Based on the patterns
how client-specific variables are accessed upon a system ser-
vice call, a customized taint analysis approach, called slim
tainting, is designed to precisely and automatically pinpoint
client-specific variables (Section 4).

Third, a straightforward design is to place the symbolic
execution engine inside the Android system, such that the
analyzer can make use of the host execution environment
including the native libraries and other supporting processes
(e.g., the Service Manager process used to register and query
system services). But this way the symbolic executor is
tightly coupled with Android, and the implementation has
to handle compatibility with the Android Runtime (ART)
in terms of thread management, instruction execution, bi-
nary representation of objects, and garbage collection. This
significantly complicates the implementation of the symbolic
executor and makes the system brittle and hard to debug
due to various incompatibility issues. Moreover, since it is
unlikely to modularize the code for symbolic execution based
on this design, whenever a new version of the Android system
is released the symbolic execution code has to be re-inserted.
To avoid the complicated and brittle implementation and
the endless maintenance, a decoupled architecture is desired.
However, how to design an architecture that can make use
of the Android execution environment without leading to a
complicated and coupled implementation is a challenge (C3).

We propose a decoupled design which builds the symbolic
executor outside the Android system but is still able to make
use of the Android execution environment. An innovative and
critical component of the system is to migrate information
generated in Android, such as the classes and objects, to the
symbolic execution environment (Section 5).

We have overcome the challenges above and implemented
the symbolic execution system named Centaur for symbolic
execution of the Java code in Android Framework. The
source code for Centaur is publicly available.2 Centaur
is a path exploration system that can effectively assist au-
tomatic and precise vulnerability discovery. We concretely
demonstrate how Centaur can be applied to vulnerability
discovery by considering several recently uncovered attacks
that exploit the framework vulnerabilities. We show that
the process minimizes the manual effort and guarantees zero-
false positives, in contrast with recent researches on finding
Android Framework vulnerabilities that rely on laborious
and error-prone manual work [47, 45]. Finally, we make use
of Centaur to generate PoC exploits to validate the findings.
We make the following contributions.

• To our knowledge, Centaur is the first system that
supports symbolic execution of Android Framework. It
provides an approach to exploring paths in Android
Framework automatically and precisely. The proposed

2https://github.com/Android-Framewrok-Symbolic-Executor/
Centaur

techniques can potentially be applied to symbolic exe-
cution of other complex middleware.

• Unlike previous symbolic execution schemes that ei-
ther start analysis from the main function or analyze a
non-main function without the context information, we
employ a scheme that allows service interface methods
of middleware to be analyzed separately for much im-
proved scalability and meanwhile provides a complete
execution context.

• A novel tainting analysis technique is proposed to pre-
cisely identify the framework variables derived from a
given app. It is particularly suitable for vulnerability
discovery as it considers all possible values under the
control of a malicious app.

• An innovative architecture that builds the symbolic
executor out of the Android system is proposed. A
powerful algorithm that migrates the execution context
information from Android to the symbolic executor is
designed.

• We have implemented Centaur and evaluated it in
terms of the effectiveness and precision in finding vul-
nerabilities and generating PoC exploits.

The remainder of the paper is organized as follows. Sec-
tion 2 covers some background about Android Framework
and symbolic execution. Section 3 gives an overview of the
system. Section 4 describes how to identify variables as sym-
bolic inputs. Section 5 presents how to migrate the execution
context. Section 6 describes the implementation details, and
Section 7 describes the evaluation. The related work is dis-
cussed in Section 8, and the paper is concluded in Section 9.

2. BACKGROUND
Android Framework. Android Framework provides a col-
lection of system services, which implements many funda-
mental functionalities, such as managing the life cycle of
all apps, organizing activities into tasks, and managing app
packages. Most of the system services, except for the media
services, run as threads in the System Server process [26].
Thus, the System Server process plays a central role in An-
droid Framework. This work uses the services in this process
as examples to illustrate the ideas and techniques, which
should be applicable to other services.

A system service exposes its service interface methods
invokable by apps, and a system service call is handled in the
form of a remote procedural call through the IPC mechanism
Binder, which dispatches the call to one of the threads of
the target system service. Android Framework is mainly
implemented in Java. E.g., in Android Framework 5.0, there
are 2.4 million lines of Java code and 880 thousand lines
of C/C++ code. Currently, Centaur can only perform
symbolic execution of Java code.
Symbolic execution. Symbolic execution provides a means
of efficiently exploring execution paths [33]. For example,
consider the function getAllowedResolutionLevel in Fig-
ure 1, by assigning a symbolic value (as opposed to assigning
concrete values as in fuzzing) to ps, symbolic execution
analysis can iterate every of the three paths and precisely
provide the condition that the symbolic value should satisfy

227

https://github.com/Android-Framewrok-Symbolic-Executor/Centaur
https://github.com/Android-Framewrok-Symbolic-Executor/Centaur

for executing a given path; e.g., the symbolic execution anal-
ysis can produce the path condition for reaching Line 18:
ps.contains(ACCESS_FINE_LOCATION).

Symbolic execution is particularly suitable for vulnera-
bility discovery for several reasons. First, it performs an
efficient and automatic path exploration and ideally explores
all possible paths. So that it is able to discover as many
vulnerability instances as possible. Second, for each path
explored, it records a path condition, which is a symbolic
expression describing the condition that should be satisfied
by the input values in order that the path is taken. Con-
sequently, by resolving the path condition, one can obtain
the concrete input values that force the execution to follow
the corresponding path; the concrete input values can be
used to construct exploits, and can be fed into real program
execution for verifying the suspected vulnerability. This way,
it guarantees zero false-positives in vulnerability discovery.

One of the main challenges in applying symbolic execution
to large-sized programs is to cope with the path explosion
problem, as the number of distinct execution paths is expo-
nential in the number of branches that depend on symbolic
values. We mitigate the problem using multiple ways, such as
analyzing service interface methods separately and precisely
identifying variables as symbolic inputs.

3. SYSTEM OVERVIEW
Our observation of Android Framework is that its execution

consists of the initialization phase and the ready-for-use
phase, and the initialization phase is fairly stable when the
system restarts, since the system boots mainly according
to the system configuration, which itself is stable. Thus, to
resolve the problem of the missing context information (C1),
we propose a phased concrete-to-symbolic execution (PC2SE)
for analyzing middleware software like Android Framework;
it runs the initialization phase as whole-system concrete
execution and then performs symbolic execution starting at
one of the entrypoint methods under the execution context
provided by the concrete execution. It avoids the state
space explosion due to the complex initialization phase and
meanwhile provides the context for symbolic execution, such
that the type and value information of the input variables (i.e.,
non-locally defined variables read during symbolic execution)
is available.

When starting the symbolic execution from an entrypoint
method, if only the parameters of the entrypoint method
are set as symbolic inputs [40], the path exploration will
be severely limited, leading to over-constrained symbolic
execution. In the framework, variables derived from the ma-
licious app (mainly its manifest file) are also under control
of attackers and can affect the execution of system service
calls; thus, those variables should also be set as symbolic
inputs. To resolve C2 (i.e., identifying variables derived from
the malicious app as symbolic inputs), instead of tracking
how information is flowed from an app to the framework, we
investigate how the app-specific variables in the framework
are accessed and propose slim tainting to identify those vari-
ables as symbolic inputs on the fly during path exploration
by capturing the characteristic access patterns (Section 4).
This way, the path exploration considers all possible values
of these variables.

To address C3 (i.e., to avoid complicated implementation
and endless maintenance due to the coupled design), we pro-
pose a novel architecture that is suitable for PC2SE, as shown

Android

system

RPC

server JNI call handling

Symbolic execution engine

RPC

client

Execution context

query client

Symbolic

inputs selector

Execution context

query server

Figure 2: Architecture of Centaur.

in Figure 2, where the symbolic execution engine is built
outside of Android. As the symbolic execution engine does
not need to take care of the comparability issues but is spe-
cialized for path exploration, its design and implementation
are largely simplified. Plus, since the code for the symbolic
executor is separated from Android code, it does not need
to be maintained when the Android system is updated.

The whole-system concrete execution is performed in the
Android system. Between the Android system and the sym-
bolic execution engine is the execution context query server,
which migrates the context information from Android to
the symbolic execution engine. How to correctly interpret
the semantics of the bytes and bits in the heap captured at
Android and to mitigate the information properly will be
discussed in Section 5. Finally, an RPC server placed inside
the Android system, and JNI calls during path exploration
are delegated to the RPC server, which will be discussed in
Section 6.

4. IDENTIFYING SYMBOLIC INPUTS

4.1 App-specific Variables
To deal with over-constrained symbolic execution, it is vital

to set Android Framework variables that are derived from
the malicious app as symbolic inputs, such that execution
paths due to all possible values of these variables are explored
by symbolic execution.

A closer look at Android Framework reveals that there
are two distinct types of variables. The first type, called
non-app-specific variables, are allocated regardless of apps
in the system. For example, the aforementioned Location-

ManagerService.mProviders ArrayList (Line 6 in Figure 1)
exists no matter what apps are running. This type of vari-
ables should not be specified as symbolic inputs, since they
are not derived from the malicious app.

The second type, called app-specific variables, stores app-
specific information. Some variables store information for
all installed apps; for instance, Settings.mUserIds is an
ArrayList that stores the installation data of each installed
app (the code path, signature, granted permissions, etc.).
Others store the information of running apps, such as task
affinities, intents, and back stacks. Unlike the Linux kernel,
which stores most information of a process in a centralized
structure task_struct, the app-specific information in An-
droid is stored in the many data structures for the system
services: Android Framework code is structured as a set of
system service classes, each of which points to some objects
and arrays for storing app-specific information. Therefore,
given an app, the framework variables derived from it scatter
and exist as objects fields and array elements among the
many data structures.

Note that the task of selecting variables as symbolic inputs
is not only to find the app-specific variables but also to

228

Figure 3: Example of retrieving information from a
hash-table-based variable mPackages.

// Defined in the PackageManagerService class
HashMap<String, PackageParser.Package> mPackages;
int checkPermission(String perm, String pkgNm){
PackageParser.Package p = mPackages.get(pkgNm);
...

}

locate fields or elements within the variables that are derived
from a given malicious app. For instance, in addition to
determining Settings.mUserIds is an app-specific variable,
we need to locate which element in the array is derived from
the malicious app. Thus, the task is like looking for a needle
in a large pile of hay considering the large number of complex
data structures.

4.2 Access Patterns
In order to determine which variables are derived from a

given app, a natural method is to track how the informa-
tion flows from the app to Android Framework via tainting.
However, such information flow is very complex involving
multiple intricate steps, including app installation, system
boot, and starting the app. Given the complexity of these
steps and the huge amount of code involved, it is very dif-
ficult, if not impossible, to precisely track the information
flow using taint analysis. Note that existing taint analysis,
such as TaintDroid [20], Chex [35], and TaintART [50], is
able to track whether the information of the return values
(e.g., GPS locations) of specific system service calls flow to
specific sinks (e.g., sending to network), but none is able
to track how the whole app-level information propagates
to Android Framework variables. Moreover, conventional
tainting techniques suffer from the well-know overtainting
and undertainting issues, which lead to imprecise tainting
results.

Instead of proposing a even more complex taint analysis
technique to track the information flow, we resolve the chal-
lenge from a novel angle by looking at how the app-specific
variables are retrieved and marking them as symbolic inputs
in the process of path exploration. Our hypothesis is that,
as the framework stores information for multiple apps, there
must exist specific ways to retrieve the information for a given
app (i.e., the calling app), rather than any other app, when
servicing a system service call. Our further investigation
has validated the hypothesis and revealed that app-specific
variables are stored in two categories of data structures,
array-based ones (built-in arrays, ArrayList, SparseArray,
etc.) and hash-table-based ones (HashMap, HashSet, etc.),
and the two categories are accessed in two characteristic
ways, respectively.

First, given an array-based variable, the framework re-
trieves an app’s information in the array using an index
that is a function of the app’s unique UID (an app’s UID
is assigned upon installation and not changed). Our investi-
gation further shows that there are two such formulas used
to calculate the index. One is (uid%100, 000− 10, 000), con-
verting the user app’s UID into an index to retrieve the
element for the app from a built-in array or ArrayList; the
other one is (uid%100, 000), which is used to calculate the
index into a SparseArray. Two magic numbers appear in

Table 1: Taint Propagation Logic. Register variables
are referenced by vX . τ(y)← τ(x) means setting the
taint tag of y to the taint tag of x.

Inst. / Operation Taint
Function Semantics Propagation

isub vB ← vA − C if C == 10,000, τ(vB)← τ(vA)
irem vB ← vA % C if C == 100, 000, τ(vB)← τ(vA)
concat vC ← vA.concat(vB) τ(vC)← τ(vA)

the formulas and are worth interpretation. 10, 000 means
FIRST_APPLICATION_UID (Line 26 in Figure 1), indicating
the smallest UID an user app can have, while 100, 000 means
PER_USER_RANGE (Line 27 in Figure 1), indicating the largest
UID plus one. For example, as shown in Figure 1, the func-
tion getUserIdLpr (Line 29) utilizes the first formula to
calculate the index into the ArrayList Settings.mUserIds

(Lines 31 and 32).
Second, for hash-table-based variables, no matter it is

hash table or a set, the package name (or the package name
concatenated with a component name) is used as the key to
access elements. Figure 3 shows an example of retrieving
information from a hash-table-based variable.

While there are a large variety of data structures in the
framework, our investigation shows that they commonly
follow the two fixed access patterns to retrieve the app-
specific information when servicing a system service call.

4.3 Slim Tainting
We thus propose slim taint analysis that tracks and rec-

ognizes the characteristic access patterns above on the fly
during path exploration and sets variables as symbolic inputs
when app-specific information is accessed.

Next, we elaborate slim tainting. Similar to other tainting
techniques, it consists of taint sources, taint propagation
logic, and taint sinks. (1) The return values of getCall-

ingUID and getPackageName are set as taint sources; they
are unique identifications of an app. (2) The taint propa-
gation logic as shown in Table 1 is very simple, involving
only two instructions and one string concatenation function.
They are all derived from the access patterns described in
Section 4.2. (3) Finally, the taint sinks include the get func-
tions of the collection data structures as well as bytecode
instructions for loading elements from built-in arrays, such as
iaload (loads from an array of integers) and aaload (loads
from an array of references); they check whether the index
or key is tainted, and if so, the target element is flagged as a
symbolic input.

Example: Let us take the code in Figure 1 as an example
to illustrate how the slim taint analysis works. First, due
to the call to getCallingUID (Line 3), its return value uid

obtains the taint. Second, the taint propagates along Lines 31
and 32 according to the taint propagation logic. Finally, at
Line 33, the get function works as a sink to set the element
(and only this element) accessed through the tainted index
as a symbolic input.

Slim tainting comprises very specific taint sources and a
simple but precise taint propagation logic; it thus avoids the
overtainting and undertainting issues. Section 6 includes
its implementation details. It is worth mentioning that the
implementation intercepts some specific function calls and
changes the interpretation of several bytecode instructions;
it does not need to change a single line of the source code of

229

Android Framework and does not need any code annotation.
Therefore, it is precise and automatic. When the Android
system evolves, new access patterns may be used. In that
case, we need to update some details of slim tainting in terms
of, e.g., taint sources and propagation logic. But the idea of
capturing access patterns should still be applicable.

5. EXECUTION CONTEXT MIGRATION
The decoupled architectural design requires that the exe-

cution context due to the concrete execution be mitigated
from the Android system to the analyzer. Note that, in the
execution context, the program counter, the register file, and
the stack all obtain their fresh content when symbolic execu-
tion starts at the analyzer; only the heap in the execution
context, which is a collection of classes and objects, needs
to be migrated. The heap memory image in the execution
context is called a snapshot for short. Three problems have
to be resolved for migrating the heap information captured
in a snapshot: (1) how to obtain the semantics of the bits
and bytes in a snapshot? (2) how to conduct the migration
during symbolic execution? and (3) how to bootstrap the
migration?

5.1 Snapshot Parsing and Information Query
A heap snapshot is nothing but an array of bits. However, it

would not work if we simply copy the array of bits to the JVM
instance for symbolic execution, because the ART process
in Android and the JVM instance for symbolic execution
differ significantly in terms of the low-level representation of
classes and objects. E.g., in our implementation, each object
in our symbolic executor needs extra space for recording the
taint and the symbolic expression; plus, its heap memory
management is different from the one used in Android. On
the other hand, given an object, both ART and our JVM
should agree on the number of the contained fields, according
to the class definition file, and their values. Therefore, given
an object, our migration is not to copy its bits but to copy
the values of all its fields.

Thus, the parser analyzes the snapshot to obtain all the
active objects (and classes) and, for each object (and class),
records the values of its fields. The information is organized
in a two-tier data structure: the first tier maps an object (or
class) address to a second-tier data structure instance, which
maps field names of an object (or class) or element indexes
of an array to their values.

After the snapshot is parsed and its information is stored,
the execution context query server (in Figure 2) is used to
service requests from the symbolic exectuor by returning the
information about objects, classes and arrays. Multiple query
interfaces are provided: given a reference value, the type of
the corresponding object can be queried; given a reference
value of an object and the name of one of its fields, the
field value can be queried. Snapshot parsing and information
query provide the foundation for heap information migration.

5.2 Migration Algorithm
Given an object in the concrete execution world, for fields

of primitive types we can simply copy the field values after
allocating the space from the symbolic executor for the object.
But what about fields of the reference type? A deep copy is
too inefficient while a simple shallow copy of the reference
value will not work as the reference value only indicates
the object location in the concrete execution world (where

Algorithm 1 Migration of heap information.

1: function getfield(index)
2: objRef = peekStackTop()
3: fdInfo = getFdInfo(index) . Class-specific info.
4: fd = getFd(objRef, fdInfo) . objRef -specific info.
5: if !fd.getSnapshotRefAttribute() then
6: return super.getfield(index)
7: end if
8: concRef = fd.getValue()
9: symRef = conc2Sym.get(concRef)

10: if symRef == NULL then
11: fdType = fdInfo.getFdType()
12: if fdType == strRef then
13: str = snapshot.getStr(concRef)
14: symRef = searchConstantPool(str);
15: if symRef == NULL then
16: symRef = newString(str);
17: end if
18: else if fdType == arrayRef then
19: entryType = fdType.getEntryType()
20: len = snapshot.getArrayLen(concRef)
21: symRef = newArray(entryType, len)
22: snapshot.copyEntries(symRef, concRef)
23: else . Other reference types
24: symRef = newObj(fdType)
25: snapshot.copyFields(symRef, concRef)
26: end if
27: conc2Sym.addPair(concRef, symRef)
28: end if
29: fd.setValue(symRef)
30: fd.setSnapshotRefAttribute(false)
31: return super.getfield(index)
32: end function
33:
34: function initClass(classInfo)
35: if snapshot.isInitialized(classInfo) then
36: snapshot.copyStaticFields(classInfo)
37: else
38: super.initClass(classInfo)
39: handleBootstrapField(classInfo)
40: end if
41: end function

the snapshot has been captured). We choose to enforce
a variant of the simple shallow copy : when an object is
migrated, we simply copy all the field values, but for each
reference-typed field, we mark that it indicates a reference
value in the concrete execution world (a boolean attribute
snapshotRef is associated with each reference-typed field to
indicate whether the filed value is a location in the concrete or
symbolic execution world); later, when one of such reference-
typed fields is used to access its target object, the target
object is either migrated or, if it has been migrated, the field
value is updated with the reference value in the symbolic
exectuion world.

Therefore, a hash table, conc2Sym, is maintained to map
reference values in the concrete execution world to ones in
the symbolic execution world. Every time an object o is
migrated, a new pair 〈rc, rs〉 is added to the hash table,
where rc is the reference value of o in the concrete execution
world and rs symbolic. The hash table is maintained for
two purposes. First, it prevents duplicate migration of an

230

Table 2: Bytecode instructions (and function) used
for migrating heap information.

Instruction
Stack

Description
[before]→[after]

getfield objRef → value get a field value of an object
getstatic →value get a static field value of a class

aaload
arrayRef, index load onto the stack a reference
→ value from an array

initClass N/A invoked for class initialization

object; that is, an object pointed to by rc is migrated only if
rc is not found in the hash table. Second, the hash table is
used to translate reference values in the concrete execution
world, if they exist in the hash table, to ones in the symbolic
execution world.

The hash table conc2Sym is handled as part of the process
state, and gets stored and restored as the path exploration
advances and backtracks, respectively; this way, the migration
status keeps consistent during path exploration.

The heap execution context migration algorithm, which
is built into the symbolic execution engine, is implemented
by overriding a couple of bytecode instructions, shown in
Table 1, which includes, for each instruction, the effect that
the instruction has on the operand stack and the instruc-
tion description. Algorithm 1 shows the main migration
procedures.

5.2.1 Migrating Objects
The instruction getfield is used to access non-static fields

in an object. Given a reference to an object (this object
must have been migrated; Section 5.3 covers the reason) on
the stack (Line 2), the instruction getfield pushes a field
value of the object onto the stack. Below we describe how
an object pointed to by a field when this field is accessed
through getfield.

If the field’s snapshotRef attribute is false (Line 5), which
means that either it is a primitive-typed field or it has a refer-
ence value in the symbolic execution world, the instruction’s
interpretation is not changed (Line 6); i.e., the filed value is
simply pushed onto the stack. If snapshotRef is true and
the field value concRef is not found in conc2Sym (Line 10),
the object should be migrated (Lines 11–26); after migration,
the pair 〈concRef, symRef〉 is added to conc2Sym (Line 27).

How to migrate an object is determined by its type (Line 11).
(Recall that, given the reference value, which is the value
of the field being accessed, the the execution context query
server can locate and return the target object information,
i.e., its type and contained field values, from the concrete
execution world.) (1) If the object is a string, the algorithm
first searches for a string that has the same value within the
runtime constant pool in the VM for symbolic execution. If
not found, a new string with the same value is created in the
symbolic world (Lines 12–17). (2) If the object is an array,
an array is allocated and all the elements are copied to the
new array (Lines 18–22). This algorithm performs a shallow
copy. Thus, for a multi-dimensional array, e.g., A[5][10], only
the five elements in the top-level array are copied at this
moment. Later, when any of the five elements is accessed,
the instruction aaload has to be invoked, which is the reason
the interpretation of aaload (not shown in Algorithm 1) is
also overridden, i.e., to migrate second-level arrays. Due
to the shallow copy, an array object is not copied until a

Figure 4: Example of a test driver.

1 public TestDriver() {
2 @fromSnapshot
3 private static com.android.server.

LocationManagerService mService;
4 public static void main() {
5 // The parameters are configured as symbolic

inputs, so their values do not matter
6 mService.getProviders(null, false);
7 }
8 }

reference to the object is accessed. (3) A reference to an
ordinary object is handled by allocating a new object and
copying all its fields (Lines 23–25).

While non-static fields are accessed through getfield, ac-
cess to static fields is through getstatic. Thus, to migrate
objects pointed to by static fields, the interpretation of get-

static has to be overridden, and the interpretation is similar
to that of getfield and is thus omitted.

5.2.2 Migrating Classes
When an operation (e.g., an object of a class is created or

a class’s static fields are accessed for the first time) triggers
initialization of a class during symbolic execution, initClass
is invoked by the underlying VM for symbolic execution au-
tomatically. For classes that have been initialized during
concrete execution, the symbolic executor has to make sure
that they are migrated instead of being initialized, consider-
ing that the static fields have obtained their values during
concrete execution. Thus, when initClass is invoked, the
symbolic executor first checks whether the class has been
initialized in the concrete execution world; if so, the enclosed
static fields in the class are copied from the snapshot to the
symbolic execution world (Line 36). In particular, when an
object of some class is created in the symbolic world for
the first time due to migration (Line 24), it triggers the
invocation of initClass first, which migrates the class.

5.3 Bootstrapping
An important invariant kept during migration is that,

when a field of an object o (resp. an element of an array
A) is accessed, o (resp. A) must have been migrated in
the symbolic execution world. Assume f is the field whose
access triggers the migration of the first object; a natural
question is “where does f reside?” The answer is that f ,
called the bootstrap field, resides in the test driver class, and
it is a reference to the system service class that contains the
entrypoint method. Listing 4 shows an example of a test
driver. A custom annotation fromSnapshot is used to specify
the bootstrap field, which is recognized and handled by the
migration algorithm; specifically, when the TestDriver class
is initialized, it sets the bootstrap field value to the reference
value of the system service object in the concrete execution
world (note that all the system service classes adopt the
singleton design pattern, so there is no ambiguity when
specifying the reference value).
Example. In Listing 4, when the TestDriver class is initial-
ized, the migration algorithm sets the value of the bootstrap
field to the reference to the Location Manager service ob-
ject in the snapshot; as a result, when the bootstrap field
is accessed, the service object is migrated correctly. The
migration of classes and objects form a migration tree, which
grows as classes and objects get migrated, rooted at the class

231

(1) Access to the bootstrap field

TestDriver.mService first triggers the

migration of the LocationManagerService

class, which is performed in initClass().

(2) It also triggers the migration of the

LocationManagerService object pointed,

which is performed in getstatic().

(3) Access to the mService.mContext field triggers the

migration of the ContextImpl class, which is performed

in initClass().

(4) Next, the object pointed to by mContext gets

migrated; the migration is performed in getfield().
(5) Invocation of the static method getDefault() of the ActivityManagerNative class

triggers the migration of this class; the migration is performed in initClass().

 mService

<0x12D8F160, 1336>

LocationManagerService

<0x13068800, 1324>

 mService

<0x12D8F160, 1336>

LocationManagerService

<0x13068800, 1324>

ContextImpl

<0x6FCC52F0, 1355>

 mService

<0x12D8F160, 1336>

LocationManagerService

<0x13068800, 1324>

 mContext

<0x12D45480, 1361>

ContextImpl

<0x6FCC52F0, 1355>

ActivityManagerNative

<0x6FC89368, 1378>

 mService

<0x12D8F160, 1336>

LocationManagerService

<0x13068800, 1324>

 mContext

<0x12D45480, 1361>

ContextImpl

<0x6FCC52F0, 1355>

LocationManagerService

<0x13068800, 1324>

Figure 5: An example of migrating the heap. Grey rectangles and white ones denote classes and objects,
respectively. For each class and object, <conRef, symRef> denotes the mapping between the reference value
in the concrete execution world and that in the symbolic world. The migration of a class also triggers the
migration of all its super classes, which are not shown for simplicity.

and object corresponding to the bootstrap field type. We use
the code in Listing 4 as an example to partially illustrate how
a migration tree grows, as shown in Figure 5, where the root
node is the class and object for LocationManagerService.
Note that the step (5), getDefault is invoked due to the call
to getProviders.

6. IMPLEMENTATION DETAILS
Background on SPF. We built the symbolic executor
based on Symbolic PathFinder (SPF) [41], a symbolic ex-
ecution framework on top of Java PathFinder (JPF) [51].
SPF can be understood as a non-standard Java bytecode
interpreter, which enforces path exploration when interpret-
ing the code; e.g., when interpreting an if statement, it
creates two program states so that both branches will be
explored. It provides a set of path selection policies that can
be chosen from and various constraint solvers for resolving
path conditions.

SPF can be extended by overriding methods that are used
to interpret bytecode instructions. It also supports the inter-
ception of arbitrary function calls for customized handling
during the analysis. Specifically, JPF provides a mechanism
called Model Java Interface (MJI) that intercepts method
invocations for custom handling. Centaur makes use of
MJI to intercept certain method calls (e.g., getCallingUid,
getPackageName, and the get functions of various collection
data structures), and redirects them to our custom implemen-
tation of these functions. Finally, attributes can be added to
associate with each of the class/object fields on the heap and
variables on the stack to record and track states of interest,
such as taints and symbolic expressions.

We added 6, 285 lines of code for implementing Centaur
through extending SPF. Significant effort has been saved by
building upon SPF, which is made possible thanks to the
decoupled design.
Classpath. The Java source code in Android is compiled
into .jar files, which comprise standard .class files, and
the symbolic executor is built to analyze Java bytecode in
such .class files. The classpath below shows the classes
analyzed by the symbolic executor.

classpath=test_driver_dir;\

services_intermediates/classes-full-debug.jar;\

framework_intermeidates/classes-full-debug.jar;\

core-libart_intermediates/classes-full-debug.jar

The first line specifies the directory containing the test
driver, the next two lines spercify the Android Framework
code, and the last line the core libraries of ART, such as util-
ity, io, and math libraries. Several classes (e.g., java.lang.class,
.Thread, .StackTraceElement) are modeled by the symbolic
executor, but core-libart contains the Android version of
these classes; hences, these specific classes have to be excluded
from core-libart to avoid failures due to duplication.
Slim tainting. Slim tainting is built into the symbolic ex-
ecutor by modifying the interpretation of instructions, such as
isub (subtraction), irem (modular), and *aload, and inter-
cepting functions, such as getPackageName, getCallingUID,
String.concat (string concatenation), and various get func-
tions of collection data structures. Centaur adds one at-
tribute indicating the taint and another indicating the sym-
bolic input property for each field, array element, and call-
stack variable; Thanks to JPF’s supports for interception of
function calls and adding field attributes without modifying
the framework source code, there is no maintenance effort
needed when there are new versions of Android released, as
long as the app-specific variable access patterns (Section 4.2)
are not changed.
Capturing and Parsing Snapshots. After a heap mem-
ory snapshot of an Android Framework process is captured
(using the dumpheap utility), it is first converted to a standard
.hprof file using the hprof-conv utility in the Android SDK.
The standard .hprof file format opens up the possibility
of parsing the snapshot using many existing tools. In our
case, the file is then parsed to extract the list of classes and
objects stored in the .hprof file using a hprof file parser [29].
The extracted information is then organized into the memory
space of the execution context query server.
Dealing with Messaging. Two messaging mechanisms
that are frequently used by system services are Message
Handler and State Machine calls. A message handler is
associated with a thread’s message queue, and is used to

232

send messages to the message queue and handle them as
messages come out of the queue [28]. To deal with mes-
sages sent to a queue, we propose to replace the call to
sendMessage(message) with a call to the destination han-
dler’s handleMessage(message). We connect the senders
and receivers for messages sent through State Machine in a
similar way.
Handling JNI calls. Part of Android Framework is im-
plemented in native code, which is invoked through the
Java Native Interface (JNI) mechanism. Multiple ways are
adopted to handle JNI calls during symbolic execution. (1)
Methods that return the calling UID (getCallingUid()) and
the package name (getPackage-Name()) of the client app are
modeled to return the corresponding information for the mali-
cious app. (2) The return values of other native methods that
return app-specific information of the malicious app are spec-
ified as symbolic inputs. For example, many native methods
declared in the package android.content.res access appli-
cation resources. (3) For native methods that do not have
return values are ignored. (4) Other calls to native methods
are delegated back to Android through remote procedure
calls (RPCs). The RPC client in the symbolic executor is
built similar to jpf-nhandler [46]. While jpf-nhandler dele-
gates native calls to a host JVM, our client delegates them
to an app running as the RPC server in a remote Android
system (Figure 2) and handels native calls using reflection
on demand. The GSON library [27] is used for marshalling
and unmarshalling method parameters and return values,
which are transmitted between the RPC server and client
via socket.

7. EVALUATION
We compare Centaur against under-constrained symbolic

execution (UCSE) in Section 7.1. Both can start symbolic
execution from system interface methods to reach the code
deep in the program, but Centaur makes use of the exe-
cution context provided by concrete execution. Ideally, we
should also compare the PC2SE scheme used in Centaur
against symbolic execution that starts from the main entry of
Android Framework, that is, SystemServer.main, but note
that our symbolic executor runs outside Android, while at
the initialization phase the System Server heavily relies on
the Android environment, such as the file systems and other
supporting processes, to finish its initialization, meaning that
it is unlikely to initialize the System Server process outside
the Android environment. We thus compare PC2SE with
UCSE only.

Centaur provides strong support for vulnerability discov-
ery and exploit generation. To demonstrate how Centaur
can be applied to assisting vulnerability discovery, we inves-
tigate two distinct types of recently uncovered attacks that
exploit Android Framework vulnerabilities. The investiga-
tion in Sections 7.2 and 7.3 shows how zero-day vulnerability
instances can be discovered through the application of Cen-
taur.

Finally, the reliability of the approach is investigated. We
present exploit generation experiments based on snapshots
captured at different times, and analyze the consistency of
the results in Section 7.4.

The experiments were performed on a machine with an
Intel Core i7 4.0Ghz Quad Core processor and 32GB RAM
running Linux kernel 3.13. Exploits were generated on An-

droid Framework 5.0 and verified using different versions of
Android systems.

We use a skeleton app to act as the malicious app; it
contains all the aspects of a regular app, including the man-
ifest file, activities, and services, but does not implement
any essential functionality; in particular, the skeleton app
used in our experiments borrows the manifest file from the
Android developer website, which has “every element that it
can contain” [2]. In practice, the analyst can choose any app
as the malicious app.

7.1 Comparison with Under-constrained Sym-
bolic Execution (UCSE)

The first issue of applying UCSE to symbolic execution
of Android Framework is that virtual function calls are fre-
quently used in the framework code, but the runtime types
of the receiver objects are unknown. UCSE constructs the
receiver objects based on the type hierarchy or relying on
manual specifications, which either explores spurious paths
or requires much manual effort.

The second issues is that input variables which are treated
as concrete inputs in Centaur are treated as symbolic inputs
in UCSE. UCSE handles such symbolic inputs using lazy
initialization, which causes the following problems: (1) loops
that iterate through collection data structures are unbounded,
and (2) the generated concrete values may be unrealistic.

We tried to perform UCSE of Android Framework using
Java PathFinder, which kept crashing when it was applied
directly. We spent a lot of time and tedious effort modify-
ing the framework code (e.g., adding the type information
about objects pointed to by references to assist dynamic dis-
patching) to make the symbolic execution possible. We thus
only modified the code with respect to the getProviders

API and the startActivity. UCSE spent 138m when an-
alyzing getProviders and ran out of memory in the case
of startActivity, while Centaur finished them within 26s
and 42m 37s, respectively.

Therefore, path exploration without precise information
of the execution context causes many problems, such as
requiring tedious manual annotation effort and exploring
spurious paths. Centaur resolves the problems by migrating
the execution context from the concrete execution world to
symbolic execution.

7.2 Investigating Inconsistent Security Policy
Enforcement (ISPE)

Background. Android Framework utilizes a permission-
based security model, which provides controlled access to
various system resources. However, a sensitive operation
may be reached from different paths, which may enforce
security checks inconsistently. As a result, an attacker with
insufficient privilege may perform sensitive operations by
taking paths that lack security checks. Recently, static anal-
ysis combined with manual code inspection has been applied
to finding such inconsistent security enforcement cases in
Android Framework [47]. The system, called Kratos, first
builds a call graph based on the Android Framework code.
With the call graph, it finds all the execution paths that can
reach sensitive operations. Kratos then compares the paths
pairwise to identify paths that reach the same sensitive oper-
ation with inconsistent security checks enforced, and reports
them as suspected ISPE vulnerabilities, in that they violate

233

the security property that all paths should have consistent
permissions for reaching a given sensitive operation.
Combined approach for bug finding. Static analysis
based on the reachability analysis for finding ISPE bugs may
report false positives, as some paths are infeasible in real
executions. Currently, manual effort is used to scrutinize
the code along each reported path, which is laborious and
tedious; moreover, it is difficult to verify the correctness of
the manual inspection results.

We propose to combine static analysis and symbolic exe-
cution to find ISPE bugs. For each suspected vulnerability
reported by static analysis, Centaur (1) finds all feasible
paths that reach the sensitive operation, (2) gives permis-
sions needed for each feasible path (the needed permissions
are included in each path condition), (3) verifies permis-
sion consistency among the feasible paths, and (4) generates
inputs that exercise the feasible paths to verify suspected
vulnerabilities. It thus demonstrates the uses of Centaur
comprehensively. All the steps have been performed automat-
ically, in contrast with previous work that relies on tedious
and error-prone manual inspection. Plus, zero false positives
are guaranteed as all suspected vulnerabilities are validated
by the runtime log.
Result summary. Table 3 summarizes the experiment re-
sults (the vulnerability shown in the last row is discussed
in Section 7.3). For each vulnerability, the table lists the
vulnerability description, entrypoint(s), the min/max num-
ber of migrated classes among different paths, the min/max
number of migrated objects among different paths, the num-
ber of sets of concrete values generated (“—” means it can be
exploited unconditionally; note that we generate one set of
concrete values for each unique path explored), the number
of sets that can be used to generate exploits, the symbolic
execution time, and the code coverage.

Given an entrypoint method, there may be multiple paths
that reach the sensitive operation, and the classes and objects
involved in the paths may vary, as illustrated by the min/max
number of migrated classes and objects. Note that when
migrating a class, all its super classes are also migrated, which
is the reason the number of migrated classes is greater than
that of objects. In the majority of the cases, the symbolic
execution of an entrypoint method is finished within less one
minute. Note that in some cases we have a relatively low
code coverage, e.g., in WSI.addOrUpdateNetwork; it is mainly
because branches that rely on non-app-specific variables are
not iterated, as we consider those variables as concrete inputs.
We are only interested in branches that can be affected by
the variables derived from the malicious app.
New findings. It is notable that some of our results
are inconsistent with those of Kratos. First, for the fifth
vulnerability in Table 3, Kratos reports that it does not
exist in Android Framework 5.0, while Centaur shows
that it still exist (i.e., different permissions are required
by the two system interface methods for reaching the sen-
sitive resource) and the result is verified by the log. Sec-
ond, for the sixth vulnerability in Table 3, Kratos reports
only one permission CONNECTIVITY_INTERNAL for invoking
NsdService.setEnabled, while Centaur reports two per-
missions, CONNECTIVITY_INTERNAL and WRITE_SETTINGS. The
more thorough and accurate results demonstrate the advan-
tages of the hybrid approach.
A detailed example. As an example, we describe in de-
tail how the combined approach was applied to finding the

Figure 6: startActivityUncheckedLocked().

final int startActivityUncheckedLocked(
ActivityRecord r, ActivityRecord sourceRecord,
IVoiceInteractionSession voiceSession,
IVoiceInteractor voiceInteractor, int
startFlags, boolean doResume, Bundle options,
TaskRecord inTask) {...}

first vulnerability in Table 3. (1) First, the static analy-
sis based on path reachability and pairwise path compari-
son finds that both getProviders(Criteria, boolean) and
getAllProviders() (in the LocationManagerService class)
have paths reaching the same sensitive operation that returns
the names of the installed GPS providers, and the two paths
can be executed with inconsistent permissions; thus, it is
a suspected vulnerability. (2) Next, Centaur is applied
to check automatically whether there exist paths that can
reach the sensitive operation from the two service interface
methods. Specifically, after the Android system is initialized
and the skeleton app is launched, a heap memory snapshot
of the System Server process is captured, and provides execu-
tion context for symbolic execution, and symbolic execution
starts from the two service interface methods respectively.

Compared to previous work that relies on enormous and
error-prone manual inspection, the combined approach of call
graph reachability analysis and symbolic execution eliminates
the need for manual work and guarantees zero false positives.
It is potential to apply this approach to finding other types
of vulnerabilities in Android Framework.

7.3 Investigating Task Hijacking Attacks
Background. The Activity Manager Service allows activi-
ties of different apps to reside in the same task, which is a
collection of activities that users interact with when perform-
ing a certain job. The activities in a given task are arranged
in a back stack, pushed in the order they were opened; users
can navigate back using the “Back” button. This feature can
be exploited by a malicious app if its activities are manipu-
lated to reside side by side with the victim apps in the same
task and hijack the user sessions of the victim apps. This
is a design flaw rather than a program bug, but can be ex-
ploited to implement UI spoofing, denial-of-service, and user
monitoring attacks [45]. For example, a malicious app may
start a malicious activity that impersonates the victim activ-
ity, and the UI spoofing attack succeeds if the fake activity
resides in the same back stack as the victim activity, and the
user may mistake the fake malicious activity for the victim
one. This case illustrates unique characteristics of exploits
that take advantage of Android Framework vulnerabilities:
the malicious “input” is not some single input (a command
parameter, a network packet, etc.) but a separate app.
Vulnerability discovery. We use the EditEventActivity

activity of the calendar app as an example victim activity.
In the skeleton app, the main activity of the skeleton app
starts the malicious activity, denoted by M . The goal of the
attack is that M , when it is started, will reside in the same
task as the victim activity. A bug is identified if such attacks
against the victim activity is feasible. We capture the heap
memory snapshot when the victim app and the skeleton app
are started and the main activity of the skeleton app is to
start the malicious activity.

234

Table 3: List of vulnerabilities and analysis statistics. (LMS, TSI, PIM, WMS, AMS, WSI, NS, and ASS
represent LocationManagerService, TelecomServiceImpl, PhoneInterfaceManager, WindowManagerService,
ActivityManagerService, WifiServiceImpl, NsdService, and ActivityStackSupervisor, respectively.)

No.
Vulnerability

Entrypoint(s)
of # of # of # of

Analysis Code
description

migrated classes migrated objects all legal
time coverage (%)

min max min max sets sets

1
Access

LMS.getAllProviders() 55 55 4 4 — — 19s 92.3
installed providers

LMS.getProviders(Criteria,boolean) 77 93 14 42 66 66 26s 45.8
with insuf. privilege

2
Read TSI.getCallState() 48 48 3 3 — — 14s

72.4
phone state TSI.isInCall() 62 69 17 20 1 1 32s

83.5
with insuf. privilege TSI.isRinging() 60 65 16 18 1 1 35s

3
End

TSI.endCall() 81 83 21 24 1 1 29s 91.3
phone calls

PIM.endCall() 80 85 23 26 1 1 38s 89.4
with insuf. privilege

4
Close

WMS.closeSystemDialogs(String) 57 57 6 6 — — 17s 69.1
system dialogs

AMS.closeSystemDialogs(String) 63 67 11 15 2 2 29s 56.0
with insuf. privilege

5
Set up HTTP proxy

WSI.addOrUpdateNetwork() 67 122 23 52 16 16 26s 30.4
working in PAC mode

WSI.getWifiServiceMessenger() 65 84 21 24 1 1 18s 57.3
with insuf. privilege

6
Enable/Disable

NS.setEnabled(boolean) 75 114 28 53 1 1 44s 47.2
mDNS daemon

NS.getMessenger() 80 81 11 14 1 1 18s 62.4
with insuf. privilege

7
Task hijacking ASS.startActivityUncheckedLocked() 324 387 136 182 2,020 810 42m 37s 58.3

Figure 7: An example set of concrete input values.

(r.intent.mFlags == 0x10080000) &&
(r.launchMode == LAUNCH_SINGLE_TASK) &&
(r.mLaunchTaskBehind == true) &&
(options == null) &&
(r.resultTo == null) &&
(r.info.documentLaunchMode == 0) &&
(r.info.targetActivity == null) &&
(r.taskAffinity == "android.task.calendar")

While the method for starting an activity is startActivity,
the task selection is done in startActivityUncheckedLocked,
which is invoked by startActivity. We thus performed
the symbolic execution of startActivityUncheckedLocked

to simplify the path exploration; it has eight parameters as
shown in Figure 6. The first parameter r is an ActivityRecord

instance storing the information of M , while the second stor-
ing that of the caller activity. The description of other
parameters is omitted. They are set to symbolic inputs.
The constraint indicating that the task selected for M is
exactly the one hosting the victim activity is added to each
of the path conditions when it is to be resolved; that is,
〈m.task.taskId == v.task.taskId〉, where m and v represent
the activityRecords of the malicious activity and the vic-
tim activity, respectively. A feasible path is found if the path
condition is resolvable.
Exploit generation. The symbolic execution generated
2,020 sets of concrete input values (each set corresponds to
a unique path), among which some contain illegal concrete
values, e.g., due to requiring the malicious activity’s package
and activity names to be equal to those of the victim activ-
ity. Simple scripts were written to filter out illegal concrete
values (1,210 sets totally). Figure 7 shows an example of
the rest 810 sets of legal concrete values. In this example,
r.intent.mFlags and options (whose type is Bundle) guide
how to set the two parameters of startActivity(Intent,

Bundle), respectively, and others instruct how to configure
the malicious activity; for example, r.launchMode is mapped

Figure 8: Exploit example.

// Snippet of AndroidManifest.xml
<activity android:name=".maliciousActivity"

android:launchMode="singleTask"
android:taskAffinity="android.task.calendar"
android:documentLaunchMode="none" />

// The main activity starts the malicious
activity

public void onCreate(Bundle savedInstanceState) {
Intent i = new Intent(this, maliciousActivity.

class);
intent.setFlags(0x10080000);
// null is due to "options == null"
startActivity(i, null);

}

Table 4: Effectiveness of the generated exploits.
Android version 4.0 4.1 4.2 4.3 4.4 5.0

of effective exploits 434 674 674 674 702 810

to the android:launchMode in the manifest file. Figure 8
shows the exploit generated according to the set of concrete
values, and it has verified that the exploit can be used to
launch task hijacking successfully.

We then examined whether the exploits generated on An-
droid 5.0 were effective on other versions of Android systems.
Table 4 lists the results, which show that the effectiveness
of the exploits are affected by the versions of Android sys-
tems. Further investigation has revealed that the differ-
ence is mainly caused by code changes. For example, the
new exploiting condition FLAG_ACTIVITY_NEW_DOCUMENT is
not introduced until Android 5.0 (discussed below); the API
startActivity(Intent, Bundle) is not included in version
4.0, and thus only exploits with options == null can be
used for invoking startActivity(Intent).

Newly discovered exploiting condition. The path
conditions generated from symbolic execution reveal an extra
exploiting condition (requiring a specific bit in the bitflags

235

r.intent.mFlags be 0) that was not reported in previous
work [45]. Compared to previous work that relies on ad
hoc manual effort for discovering the exploiting conditions,
Centaur finds them in a systematic and automatic way.

7.4 Consistency of Exploits Generated with Dif-
ferent Snapshots

We then investigated whether snapshots captured at dif-
ferent times affected exploit generation. After the system
was initialized, 20 snapshots were captured at intervals of
5 minutes on Android 5.0 with random user interactions
during the intervals. For each vulnerability listed in Table 3,
symbolic execution was performed with each of the 20 snap-
shots providing the execution context. The results show that,
for each vulnerability, the same sets of path conditions were
generated with different snapshots, which means that the
resulting exploits with the different snapshots are consistent.

There are several reasons that explain the consistency of
exploits. First, if a malicious app does not rely on other apps
to exploit a vulnerability (e.g., inconsistent security policy en-
forcement), access control is enforced in Android Framework
to make sure the information of other apps is not accessed.
Thus, the configurations and statuses of other apps do not
affect the path exploration. On the other hand, for exploits
that rely on the statuses of other apps (e.g., the victim app
in task hijacking attacks), the path exploration may depend
on the statuses of one or more apps; hence, during symbolic
execution, reasonable setting up is established consistently;
for example, the victim activity should already be started
in the task hijacking case prior to capturing snapshots. The
results show that an attack succeeds as long as the same
statuses recur.

Finally, the values of non-app-specific variables do not
affect path exploration, at least, in our cases. For ex-
ample, in the case of inconsistent security policy enforce-
ment vulnerabilities due to accessing the names of installed
providers, the path exploration does not depend on the con-
crete values of the related non-app-specific variable (i.e.,
LocationManagerService.mProviders), although different
provider names may be returned by the service calls when
different providers are installed.

8. RELATED WORK
DART is the first concolic testing tool that uses symbolic

analysis in concert with concrete execution to improve code
coverage [24]. It runs the tested unit code on random inputs
and symbolically gathers constraints at decision points that
use input values; then, it negates one of these symbolic con-
straints to generate the next test case. DART [24], EXE [9],
KLEE [8], and S2E [14] all make use of concrete execution to
execute external code or uninterpreted functions, similar to
our handling of JNI calls. In Centaur, concrete execution is
not only used for handling uninterpreted functions (i.e., JNI
calls), but also for the initialization of Android Framework
in order to set up the execution context for the symbolic
execution phase.

Symbolic PathFinder (SPF) can switch to symbolic exe-
cution at any point of concrete execution [40]. SPF aims at
generating unit test cases, so it simply specifies function pa-
rameters as symbolic inputs, which leads to over-constrained
symbolic execution. We make use of concrete execution in
the initialization phase, which makes the analysis results sen-
sible and easy to interpret. Plus, PC2SE aims at generating

exploits that can be embedded into malicious apps, so it
finds variables derived from the malicious app, in addition to
the function parameters, and uses them as symbolic inputs.
Finally, we have proposed a novel architectural design that
decouples symbolic executor from the concrete execution
environment to obtain a modularized implementation.

Symbolic execution has been applied to vulnerability dis-
covery and exploit generation in previous work. For example,
SAGE has successfully found many vulnerabilities of Win-
dows programs [25], leveraging the technique described in
DART [24]. SAGE has demonstrated symbolic execution can
be very useful for finding vulnerabilities. AEG has shown vul-
nerability discovery and exploit generation given vulnerable
Unix programs [5]. Automatic patch-based exploit gener-
ation (APEG) generates exploits based on information in
patches [7]. SAGE, APEG, and AEG all consider stand-alone
native Windows or Unix executables, while our work analyzes
Android Framework, a piece of middleware that manages all
executables running upon it. Many unique challenges arise
and are addressed in this work.

There has been a lot of work that applies symbolic exe-
cution to Android apps for test input generation or security
enhancement [38, 1, 31, 37, 54]. For example, Jensen et al.
proposed to use concolic execution to build summaries of
individual event handlers and then generate event sequences
backward, in order to find event sequences that reach a given
target line of code in the Android app [31]. To our knowledge,
our system is the first that supports symbolic execution of
Android Framework.

9. CONCLUSIONS
We have introduced the first system, called Centaur,

for symbolic execution of Android Framework. To avoid
state space explosion due to the complex initialization, the
Phased Concrete-to-Symbolic Execution is proposed that
runs concrete execution for the initialization phase, provid-
ing execution context to symbolic execution. Among the
large number of variables in the execution context, slim taint-
ing tracks characteristic access patterns to identify variables
derived from the malicious apps as symbolic inputs. In order
to decouple the implementation of Centaur from Android,
the execution context provided by concrete execution is mi-
grated from an Android ART process to a Java VM. We have
implemented the system and evaluated it. The evaluation
shows that Centaur is very effective in both vulnerability
discovery and exploit generation. Given that symbolic exe-
cution has proven to be a very useful technique, we plan to
apply Centaur to other purposes in future work, such as
automatic API specification generation, fine-grained malware
analysis, and testing.

10. ACKNOWLEDGMENTS
We thank anonymous reviewers and our shepherd Dr. Luca

Mottola for their constructive comments. Dr. Peng Liu
and Lannan Luo were supported by ARO W911NF-13-1-
0421 (MURI), NSF CCF-1320605, NSF SBE-1422215, NSF
CNS-1422594, and NSF CNS-1505664. Dr. Kai Chen was
supported by NSFC U1536106, 61100226, Youth Innova-
tion Promotion Association CAS, and strategic priority re-
search program of CAS (XDA06010701). Dr. Min Yang was
funded by the National Program on Key Basic Research
(NO.2015CB358800) and NSFC U1636204.

236

11. REFERENCES
[1] S. Anand, M. Naik, H. Yang, and M. J. Harrold.

Automated concolic testing of smartphone apps. In
FSE, 2012.

[2] App Manifest. https://developer.android.com/guide/
topics/manifest/manifest-intro.html.

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. L. Traon, D. Octeau, and P. McDaniel.
FlowDroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for Android apps. In
PLDI, 2014.

[4] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie.
PScout: analyzing the android permission specification.
In CCS, 2012.

[5] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley.
AEG: automatic exploit generation. In
Communications of the ACM, 2014.

[6] M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau,
and S. Weisgerber. On demystifying the android
application framework: Re-visiting android permission
specification analysis. In USENIX Security, 2016.

[7] D. Brumley, P. Poosankam, D. Song, and J. Zheng.
Automatic patch-based exploit generation is possible:
Techniques and implications. In USENIX Security,
2008.

[8] C. Cadar, D. Dunbar, and D. R. Engler. KLEE:
unassisted and automatic generation of high-coverage
tests for complex systems programs. In OSDI, 2008.

[9] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and
D. R. Engler. EXE: automatically generating inputs of
death. In CCS, 2006.

[10] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele,
C. Kruegel, G. Vigna, and Y. Chen. EdgeMiner:
automatically detecting implicit control flow transitions
through the android framework. In NDSS, 2015.

[11] K. Chen, P. Liu, and Y. Zhang. Achieving accuracy
and scalability simultaneously in detecting application
clones on Android markets. In ICSE, 2014.

[12] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang,
H. Huang, WeiZou, and P. Liu. Finding unknown
malice in 10 seconds: Mass vetting for new threats at
the Google-Play scale. In USENIX Security, 2015.

[13] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in android.
In Proceedings of the 9th international conference on
Mobile systems, applications, and services, pages
239–252, 2011.

[14] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: a
platform for in-vivo multi-path analysis of software
systems. In ASPLOS, 2011.

[15] M. Costa, M. Castro, L. Zhou, L. Zhang, and
M. Peinado. Bouncer: securing software by blocking
bad input. In SOSP, 2007.

[16] CVE-2015-6628.
https://www.cvedetails.com/cve/CVE-2015-6628/.

[17] CVE-2016-2496.
https://www.cvedetails.com/cve/CVE-2016-2496/.

[18] CVE-2016-3750.
https://www.cvedetails.com/cve/CVE-2016-3750/.

[19] CVE-2016-3759.
https://www.cvedetails.com/cve/CVE-2016-3759/.

[20] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI, 2010.

[21] W. Enck, M. Ongtang, and P. McDaniel. On
lightweight mobile phone application certification. In
Proceedings of the 16th ACM conference on Computer
and communications security, pages 235–245. ACM,
2009.

[22] D. Engler and D. Dunbar. Under-constrained execution:
marking automatic code destruction easy and scalable.
In ISSTA, 2007.

[23] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android permissions demystified. In CCS, 2011.

[24] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In PLDI, 2005.

[25] P. Godefroid, M. Y. Levin, and D. Molnar. Automated
whitebox fuzz testing. In NDSS, 2008.

[26] Google. Android Interfaces and Architecture.
https://source.android.com/devices/.

[27] GSON. https://sites.google.com/site/gson/Home.

[28] Handler. https://developer.android.com/reference/
android/os/Handler.html.

[29] HPROF Parser.
https://github.com/eaftan/hprof-parser.

[30] IDC. Smartphone OS Market Share, 2016.
https://www.idc.com/prodserv/
smartphone-os-market-share.jsp.

[31] C. S. Jensen, M. R. Prasad, and A. Moller. Automated
testing with targeted event sequence generation. In
ISSTA, 2013.

[32] S. Khurshid, C. S. Păsăreanu, and W. Visser.
Generalized symbolic execution for model checking and
testing. In TACAS, 2003.

[33] J. C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.

[34] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon,
S. Arzt, S. Rasthofer, E. Bodden, D. Octeau, and
P. McDaniel. Iccta: Detecting inter-component privacy
leaks in android apps. In Proceedings of the 37th
International Conference on Software Engineering,
pages 280–291, 2015.

[35] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex:
statically vetting android apps for component hijacking
vulnerabilities. In Proceedings of the 2012 ACM
conference on Computer and communications security,
pages 229–240, 2012.

[36] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu.
Semantics-based obfuscation-resilient binary code
similarity comparison with applications to software
plagiarism detection. In FSE, 2014.

[37] N. Mirzaei, H. Bagheri, R. Mahmood, and S. Malek.
SIG-Droid: automated system input generation for
android applications. In ISSRE, 2015.

[38] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, and
R. Mahmood. Testing android apps through symbolic
execution. In Software Engineering Notes, 2012.

[39] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden,
J. Klein, and Y. Le Traon. Effective inter-component
communication mapping in android: An essential step
towards holistic security analysis. In Presented as part

237

https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://www.cvedetails.com/cve/CVE-2015-6628/
https://www.cvedetails.com/cve/CVE-2016-2496/
https://www.cvedetails.com/cve/CVE-2016-3750/
https://www.cvedetails.com/cve/CVE-2016-3759/
https://source.android.com/devices/
https://sites.google.com/site/gson/Home
https://developer.android.com/reference/android/os/Handler.html
https://developer.android.com/reference/android/os/Handler.html
https://github.com/eaftan/hprof-parser
https://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://www.idc.com/prodserv/smartphone-os-market-share.jsp

of the 22nd USENIX Security Symposium (USENIX
Security 13), pages 543–558, 2013.

[40] C. S. Păsăreanu, P. C. Mehlitz, D. H. Bushnell,
K. Gundy-Burlet, M. Lowry, S. Person, and M. Pape.
Combining unit-level symbolic execution and
system-level concrete execution for testing nasa
software. In ISSTA, 2008.

[41] C. S. Păsăreanu, W. Visser, D. Bushnell,
J. Geldenhuys, P. Mehlitz, and N. Rungta. Symbolic
PathFinder: integrating symbolic execution with model
checking for java bytecode analysis. In ASE, 2013.

[42] D. A. Ramos and D. Engler. Under-Constrained
Symbolic Execution: correctness checking for real code.
In USENIX Security, 2015.

[43] D. A. Ramos and D. R. Engler. Practical, low-effort
equivalence verification of real code. In CAV, 2011.

[44] V. Rastogi, Y. Chen, and W. Enck. Appsplayground:
automatic security analysis of smartphone applications.
In Proceedings of the third ACM conference on Data
and application security and privacy, pages 209–220,
2013.

[45] C. Ren, Y. Zhang, H. Xue, T. Wei, and P. Liu.
Towards discovering and understanding task hijacking
in android. In USENIX Security, 2015.

[46] N. Shafiei and F. van Breugel. Automatic handling of
native methods in Java PathFinder. In SPIN
Symposium on Model Checking of Software, 2014.

[47] Y. Shao, J. Ott, Q. A. Chen, Z. Qian, and Z. M. Mao.
Kratos: discovering inconsistent security policy
enforcement in the android framework. In NDSS, 2016.

[48] Stagefright.
https://en.wikipedia.org/wiki/Stagefright (bug).

[49] Statista. Cumulative number of apps downloaded from
the Google Play, 2016.
https://www.statista.com/statistics/281106/
number-of-android-app-downloads-from-google-play/.

[50] M. Sun, T. Wei, and J. Lui. Taintart: A practical
multi-level information-flow tracking system for
android runtime. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and
Communications Security, pages 331–342. ACM, 2016.

[51] W. Visser, K. Havelund, G. Brat, S. Park, and
F. Lerda. Model checking programs. In ASE, 2003.

[52] WSJ. Google says android has 1.4 billion active users.
www.wsj.com/articles/
google-says-android-has-1-4-billion-active-users-1443546856.

[53] L.-K. Yan and H. Yin. DroidScope: Seamlessly
reconstructing os and dalvik semantic views for
dynamic android malware analysis. In USENIX
Security, 2012.

[54] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S.
Wang. Appintent: Analyzing sensitive data
transmission in android for privacy leakage detection.
In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pages
1043–1054. ACM, 2013.

[55] Y. Zhou and X. Jiang. Dissecting Android malware:
Characterization and evolution. In S&P, 2012.

[56] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you,
get off of my market: Detecting malicious apps in

official and alternative android markets. In NDSS,
volume 25, pages 50–52, 2012.

238

https://en.wikipedia.org/wiki/Stagefright_(bug)
https://www.statista.com/statistics/281106/number-of-android-app-downloads-from-google-play/
https://www.statista.com/statistics/281106/number-of-android-app-downloads-from-google-play/
www.wsj.com/articles/google-says-android-has-1-4-billion-active-users-1443546856
www.wsj.com/articles/google-says-android-has-1-4-billion-active-users-1443546856

	Introduction
	Background
	System Overview
	Identifying Symbolic Inputs
	App-specific Variables
	Access Patterns
	Slim Tainting

	Execution Context Migration
	Snapshot Parsing and Information Query
	Migration Algorithm
	Migrating Objects
	Migrating Classes

	Bootstrapping

	Implementation Details
	Evaluation
	Comparison with Under-constrained Symbolic Execution (UCSE)
	Investigating Inconsistent Security Policy Enforcement (ISPE)
	Investigating Task Hijacking Attacks
	Consistency of Exploits Generated with Different Snapshots

	Related Work
	Conclusions
	Acknowledgments
	References

