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Abstract—Given a permission-based framework, its permission
specification, which is a mapping between API methods of the
framework and the permissions they require, is important for
software developers and analysts. In the case of Android Frame-
work, which contains millions of lines of code, static analysis
is promising for analyzing such a large codebase to derive its
permission specification. One of the common building blocks for
static analysis is the generation of a global call graph. However,
as common for object-oriented languages, the target of a virtual
function call depends on the runtime type of the receiving object,
which is undecidable statically. Existing work applies traditional
analysis approaches, such as class-hierarchy analysis and points-
to analysis, to building an over-approximated call graph of the
framework, causing much imprecision to downstream analysis.
We propose the heap memory snapshot assisted program analysis
that leverages the dynamic information stored in the heap of
Android Framework execution to assist in generating a more
precise call graph; then, further analysis is performed on the call
graph to extract the permission specification. We have developed
a prototype and evaluated it on different versions of Android
Framework. The evaluation shows that our method significantly
improves on prior work, producing more precise results.

I. INTRODUCTION

The global mobile market is booming, amounting to more
than $3.1 trillion of economic value [29]. Capturing 87.5%
of the global smartphone shipments, Android dominates the
market with 1.4 billion Android devices and over 65 billion apps
downloaded [45]. As users frequently interact with smartphones,
plenty of sensitive information is stored in smartphones. Thus,
a permission system is needed to control access of applications
to sensitive information as well as resources, such as the user’s
contact list and the phone’s microphone [2], [36], [48].

In Android, the permission system is implemented in the
Android Framework, which exposes application programming
interfaces (APIs) to third party applications for interacting
with the underlying system [36], [48], [37], [11], [5], [30]. For
instance, if an app wants to obtain the GPS location, it needs
to invoke the getGPSLocation method of the Location
Manager Service provided by the framework. The framework
will then check whether the calling app has been granted the
required permission before retrieving the sensitive data.

As the permission system plays an indispensable role to
protect sensitive information and resources, it is important to
have a good understanding of the permission specification,
which is a mapping between each of the API methods and its
required permission(s). In the case of Android, the mapping
is given by the official documentation, which, however, is not
always up-to-date or clear [3], [35]. As a result, developers are

often confused with the use of permissions and, hence, either
under- or over-estimate the required permissions. Missing a
permission causes application failures, while adding too many
permissions is not secure, as they may be exploited by injected
malicious code and malicious developers [22], [3].

Researchers have attempted to extract the permission specifi-
cation using different approaches, which can be divided into the
following two categories: dynamic analysis and static analysis.
Stowaway [22] uses unit testing and feedback directed API
fuzzing to run apps and extract the permission specification;
however, even with significant time and effort invested in
testing, it is still difficult to examine the entire Android
Framework and achieve a high code coverage in order to
extract a complete mapping.

Some approaches resort to static analysis, which is more
promising for analyzing a large codebase. One of the building
blocks in the process is the computation of a global (inter-
procedural) call graph of Android Framework [3], [4], [41],
[13]. However, as common for object-oriented languages
(Android Framework is mainly implemented in Java), the target
of a method call depends on the runtime type of the receiving
object, which is undecidable, in general, statically. For example,
PScout [3] builds a call graph that considers each virtual
function call via a reference to target all the subclasses of the
reference type. AXPLORER [4] uses points-to analysis to infer
the possible dynamic type of the receiving object of a virtual
function call. Both the class-hierarchy analysis and points-to
analysis based approaches cause much imprecision, since they
cannot infer runtime type information accurately.

Therefore, how to generate a precise call graph of An-
droid Framework is the main challenge for extracting the
permission specification via static analysis. Our observation
about resolving this challenge is that the execution of Android
Framework consists of the initialization phase and the ready-
for-use phase. Once the initialization of the system services
is done, much object-type information is determined and
plenty of useful dynamic information is stored in the heap
of the framework process. We thus propose the heap memory
snapshot assisted program analysis that leverages the dynamic
information stored in the heap to generate a more precise call
graph. Very interestingly, as all the system services in Android
Framework adopt the singleton design pattern [34], given the
system service, there is no ambiguity to locate the object for the
system service from the heap and, hence, there is no ambiguity
to obtain the dynamic types of all the objects pointed to by
the reference fields of the system service object.



During the call graph generation, for each virtual function
invocation, whenever possible we extract the runtime type of the
receiving object from the heap memory snapshot, and precisely
connect the invocation to its target. This way, we minimize the
imprecision introduced by static analysis based inference, which
largely lowers the number of false positives (that is, permissions
not needed by an API method are falsely considered as needed).
After the call graph is built, further analysis is performed on
it to extract the permission specification.

The heap may vary with time (e.g., the runtime object
types of some references may change as the framework runs).
However, our another observation is that, once the framework
enters the ready-for-use phase, any API method could be
issued by an application. Given an API method, the needed
permission(s) should not change over time, as the permission
specification should keep consistent, no matter whether the
method is invoked right after the initialization or after a long
time. Our experiments based on snapshots captured at different
times confirm this point (Section VI-D).

We develop a prototype, called HEAPHELPER. Our experi-
ment results show that our method significantly improves on the
prior work that entirely relies on static analysis and produces
much more precise results. We further conduct experiments
based on heap memory snapshots captured at different times
and from different devices, and analyze the consistency of the
permission specification in terms of these varying heap memory
snapshots. In addition, the effectiveness of HEAPHELPER is
verified on different versions of Android Framework.

We made the following contributions.
• We propose the heap memory snapshot assisted program

analysis that leverages the dynamic information stored in
the heap to assist in generating a more precise call graph
of Android Framework. To the best of our knowledge, this
is the first work that approaches the call graph generation
problem by leveraging the heap information. It is a novel
and effective combination of dynamic information and
static analysis.

• We build HEAPHELPER and evaluate its effectiveness
in extracting the Android permission specification. Heap
memory snapshots captured at different times are used for
analyzing the permission specification. Some interesting
findings and internals of the framework are uncovered.

• The more precise call graph of Android Framework may
benefit other downstream analysis work that relies on
the call graph, such as static tainting analysis [1] and
inter-component communication [13]. Plus, the proposed
technique can potentially be applied to other complex
middleware, such as the Core Services layer in iOS, to
generate a more precise call graph for static analysis.

II. BACKGROUND

A. Android Boot Process

The Android boot process involves the initialization of An-
droid Framework. The first program to run is the bootloader
which initializes the environment and high-level kernel sub-
systems. Then the root file system is mounted and the init

process is started. The init process mounts file systems
and starts daemons such as the zygote. The zygote is a core
process from which new Android processes are forked. The
initialization of zygote starts the system_server process
which in turn initializes most system services (e.g., the
Activity Manager Service and Package Manager Service) and
managers (e.g., the Activity Manager and Package Manager).
In short, during Android’s boot process, the system services
and managers are instantiated and initialized.

B. Android Framework

Android Framework provides a collection of system
services, which implements many functionalities, such
as managing the life cycle of all apps, organizing ac-
tivities into tasks, and managing app packages, etc.
Most system services are implemented as bound ser-
vices [18] and run as threads in the system_server
process [25], while some run as threads in other
processes, e.g., com.android.inputmethod.latin,
com.android.phone, and com.android.keychain.

A system service exposes its service interface methods
invokable by apps, and a system service call is handled in
the form of a remote procedural call via the Binder IPC
mechanism, which dispatches the call to one of the threads
of the target system service. Android Framework is mainly
implemented in Java. E.g., Android Framework 5.0 contains
2.4 million lines of Java code and 880 thousand lines of C/C++
code. HEAPHELPER is designed to analyze the Java code.

C. Android Permissions

Android Framework utilizes a permission based security
model, which provides controlled access to system resources.
E.g., an app must hold a particular permission in order to access
the security critical methods of the framework. Each permission
is presented as a string. An app declares the required permis-
sions in the manifest file (i.e., AndroidManifest.xml).
During installation, the system parses the manifest file and
stores the permissions along with the app’s unique UID. When
the app wants to access a privileged system resource or a
security critical method, the corresponding system service will
query the system whether the required permissions are hold
by this calling app, which is identified by its unique UID.

There are two major types of permissions in Android: (1)
signature or system permissions that are only available to
privileged services and content providers, and (2) regular
permissions that are available to all apps. To conduct a more
comprehensive analysis of Android permissions, our work
focuses on extracting permission specification for both types.

Android permissions are checked at two different levels.
High-level permissions are checked at the framework level
(implemented in the Java code), while low-level permissions
are checked in C/C++ native services (the media service for
instance) or in the kernel (e.g., when creating a socket). Most
permissions are high-level, e.g., Android 2.2 contains a total
of 134 permissions, where 126 are checked in the Java code



1 // Defined in the LocationManagerService class
2 Context mContext;
3 List<String> getProviders(Criteria cr, boolean e) {
4 int level = getAllowedResolutionLevel(pid, uid);
5 ...
6 }
7

8 int getAllowedResolutionLevel(int pid, int uid) {
9 if (mContext.checkPermission(android.Manifest.

permission.ACCESS_FINE_LOCATION, pid, uid) ==
PackageManager.PERMISSION_GRANTED) {

10 ...
11 }}

(a) Code snippet of the LocationManagerService class.

LMS.getProviders

LMS.getAllowedResolutionLevel

Context.checkPermission

ContextWrapper.checkPermission

ContextImpl.checkPermission BridgeContext.checkPermission

MockContext.checkPermission

...

...

...

(b) Sub-call graph rooted at the framework API method
getProviders(Criteria, boolean).

Fig. 1: A motivating example. (Legend: LMS represents LocationManagerService.)

and 8 checked in the native C/C++ code. Our work focuses on
the high-level permissions, similar to the prior work [3], [4].

D. Heap Memory Snapshot

A heap memory is a collection of classes and objects for a
Java program. It is created when the program starts, and may
change as the program runs.

A heap memory snapshot (called a snapshot for short) is a
memory image of the current execution context of a program.
It contains all the classes and objects for a program. Android
Framework is mainly implemented in Java. A heap memory
snapshot of a process of Android Framework is a collection
of classes and objects for the process at the time when the
snapshot is captured.

III. OVERVIEW

A. Motivation and Observation

To analyze the Android permission specification, a critical
step is to build a global (inter-procedural) call graph of
the framework, which involves many challenges. One main
challenge is how to deal with virtual function calls. As common
for object-oriented languages, the target of a method call
depends on the runtime type of the receiving object, which is
undecidable, in general, statically.

Consider the example in Figure 1, where Figure 1(a) shows
the code snippet of the LocationManagerService
class.1 We want to generate the call graph for
the getProviders method. It first invokes the
getAllowedResolutionLevel method (Line 4),
which further invokes the checkPermission method via
mContext (Line 9), a reference variable of the Context
type (Line 2). Context is an abstract class extended by
four classes, including ContextWrapper, ContextImpl,
BridgeContext, and MockContext; each implements
the checkPermission method and is further inherited by
other classes. Without the runtime type information of the
object pointed to by mContext, it is hard to determine the
dispatch target of the method call. Such virtual function calls
prevail in the framework code.

1The code snippet has been modified slightly to ease the understanding.

Most existing work adopts a conservative approach and
attempts to extract an over-approximated of the framework’s
call graph, where a virtual function call to a class is considered
to target all its subclasses [3], [13]. For example, PScout
generates the call graph using Class Hierarchy Analysis [15],
based on the following rules: (1) a virtual call to a class can
potentially targets all its subclasses; (2) an interface call can
be resolved to call any class that implements the interface and
its sub-interfaces; and (3) the target method of each subclass is
the closest ancestor that implements the method. This approach
obviously results in a low-precision call graph, as PScout
needs to consider all possibilities if the runtime type of the
receiving object is undecidable.

Figure 1(b) shows the sub-call graph rooted at the
getProviders method generated by PScout, where the
getAllowedResolutionLevel method is first connected
to the checkPermission method of the Context class,
which is further connected to the checkPermission method
of all the subclasses of Context.

To address the issue, AXPLORER uses points-to analysis
to infer the possible dynamic type of the receiving object of
a virtual function call, and only connects the invocation to
the corresponding target [4]. However, its points-to analysis
cannot always infer runtime type information accurately, and
still causes much imprecision (Section VI-C).

Thus, how to precisely determine the dispatch targets of
virtual function calls is challenging and critical for generating
a precise call graph of Android Framework for extracting the
permission specification via static analysis.

Our observation is that the execution of Android Frame-
work consists of the initialization phase and the ready-for-use
phase. After the initialization of the system services is done,
much object-type information is determined and plenty of useful
dynamic information is stored in the heap of the framework
process. We thus propose the heap memory snapshot assisted
program analysis that leverages the dynamic information stored
in the heap to assist in generating a more precise call graph of
the framework. Very interestingly, as all the system services
in Android Framework adopt the singleton design pattern [34],
given the system service, there is no ambiguity to locate the
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Fig. 2: Architecture of HEAPHELPER.

object for the system service from the heap and, hence, there
is no ambiguity to obtain the dynamic types of all the objects
pointed to by the reference fields of the system service object.

During the call graph generation, for each virtual function
call, whenever possible we extract the runtime type of the
receiving object from the heap snapshot, and precisely connect
the invocation to its target. This way, we minimize the
imprecision introduced by static analysis based inference, which
largely lowers false positives—i.e., permissions not needed by
an API method are falsely considered as needed.

The heap may vary with time (e.g., the runtime object
types of some references may change as the framework runs).
However, our another observation is that, once the framework
enters the ready-for-use phase, any API method could be
issued by an application. Given an API method, the needed
permission(s) should not change over time, as the permission
specification should keep consistent, no matter whether the
method is invoked right after the initialization or after a long
time. Our experiments based on snapshots captured at different
times confirm this point (Section VI-D).

B. Architecture

The architecture of HEAPHELPER is shown in Figure 2.
The extraction of the permission specification from Android
Framework consists of the following five steps. (1) The
initialization phase of Android Framework is first run as
whole system concrete execution; then the heap memory
snapshot is dumped, which is fed to the call-graph generation
component along with the Android Framework class files. (2)
The call-graph generation component leverages Soot [43], the
Java bytecode analysis framework to perform static analysis
and builds a precious call graph over the entire Android
Framework (Section IV). (3) All the permission checks in
the framework code are identified and labeled (Section V-A).
(4) The framework API methods that are exposed to third-
party applications are identified (Section V-B). (5) Finally,
HEAPHELPER performs a backward reachability traversal over
the call graph to identify all exposed API calls that could reach
a particular permission check (Section V-C). The output is a
mapping between each of the framework API methods and
its required permission(s) found by HEAPHELPER. We next
present these steps separately.

IV. CALL GRAPH GENERATION

The main challenge of building a precise call graph of
Android Framework is how to handle virtual function calls.
We divide virtual function calls into four categories, as showed
in Figure 3. The first three are due to unique characteristics of

Virtual 
function calls

4. Others (general virtual function calls)

Unique characteristics 
of Android Framework

1. Service Calls
2. Message Handler
3. State Machine

Fig. 3: Four categories of virtual function calls.

1 Load Class:
2 class object id: 319195136
3 class string: com.android.server.

LocationManagerService
4 Load Class:
5 class object id: 1875661552
6 class string: android.app.ContextImpl
7 ...
8 Instance Dump:
9 object id: 316207456

10 class object id: 319195136
11 instance field values:
12 mContext = 315905152
13 ...
14 Instance Dump:
15 object id: 315905152
16 class object id: 1875661552
17 instance field values:
18 ...

Fig. 4: Part of a standard .hprof file.

Android Framework, and the last one is general virtual function
calls, commonly existing in object-oriented programs. Below
we first present how to parse a heap snapshot and then discuss
how each of the four categories is addressed.

A. Capturing and Parsing Snapshot

We first run the initialization phase of Android Framework
as concrete execution in a device, and then dump the heap
snapshot of the framework process (using the dumpheap utility
in the Android SDK) from the device. Next, the snapshot is
converted to a .hprof file using the hprof-conv utility.

The standard Java .hprof file is then passed by our tool to
build a database, called ObjType, storing the runtime type infor-
mation of the objects in the heap. Figure 4 shows an example
of the .hprof file. For each instance dump (corresponding to
an instance object) in the .hprof file, we first check its class
type, and then extract all its instance fields. If an instance field
is a reference variable, we search for the runtime type of the
object pointed to by it from the .hprof file. E.g., in Figure 4,
(1) the object at Line 8 is the LocationManagerService
type, as its class object id (Line 10) is associated with the
class LocationManagerService (Line 2-3). (2) We then
extract all its instance fields; one of them is the reference
variable mContext (Line 12). (3) Based on the value of



mContext, we look for the object pointed to by mContext,
and find it is the instance at Line 14. (4) Next, based on the
class id of this instance (Line 16), we identify its runtime
type is ContextImpl (Line 4-6). (5) Finally, we insert an
entry to the ObjType database, where the key is the variable
mContext and the value is ContextImpl.

Besides instance dumps, we also parse class dumps (each
class dump corresponds to a class object). For each class dump,
we extract all its static fields, and search for the runtime type
of the object pointed to by each static field if it is a reference
variable. Due to space limitation, we skip the discussion here,
which is similar to the process above.

B. Handling General Virtual Function Calls

We first present how to handle the general virtual function
calls, which belong to the fourth category in Figure 3.
Process. During the call graph generation, for each virtual
function call, we first determine the reference variable through
which the function call is issued, and then query the runtime
type of the object pointed to by the reference variable, if
initialized, from the ObjType database. After that, we precisely
connect the invocation to its target. Consider the code snippet
in Figure 1(a), we first determine the reference variable that
issues the virtual function call to checkPermission is
mContext (Line 9). We then find the runtime type of the
object pointed to by mContext is ContextImpl. Finally,
we directly connect getAllowedResolutionLevel to
checkPermission of the ContextImpl class.

One situation needs special attention. Assume the runtime
type of the receiving object of a virtual function call to the
method M is identified to be the class A; but the class A does
not implement M . In such a case, rather than considering the
method M of A as the target, we need to find the closest
ancestor of A, assume it is B, that implements M ; then the
method M of B is considered as the target.
JVM instruction needed to be intercepted. The
JVM has four instructions for invoking methods:
invokevirtual, invokeinterface, invokestatic,
and invokespecial. The first two instructions are used
to invoke instance methods based on dynamic dispatch
mechanism to determine the correct method to invoke at
runtime. The third one is used to invoke class methods
based on the static type of the receiving object. The last one
is used in certain special cases to invoke the initialization
method, or a method in a superclass, or a private method
where the invocation is based on the compile-time type of
the receiving object. Therefore, only the invokevirtual
and invokeinterface instructions are needed to be
intercepted during the call graph generation.

C. Handling Service Calls

Android Framework provides a collection of
system services, where most run as threads in the
system_server process [25], and some in other
processes (e.g., com.android.server.telecom and
com.android.keychain). Thus the heap snapshots of all

1 public class LocationManagerService {
2 private UserManager mUserManager;
3 void updateUserProfiles(int id) {
4 List<UserInfo> p = mUserManager.getProfiles(id);
5 ...
6 }}
7 public class UserManager {
8 private final IUserManager mService;
9 public List<UserInfo> getProfiles(int uHandle) {

10 return mService.getProfiles(uHandle, false);
11 }}

Fig. 5: An intra-process service call example.

12 class TelecomAccountRegistry {
13 private TelecomManager mTelecomManager;
14 void cleanupPhoneAccounts() {
15 hd = mTelecomManager.getAllPhoneAccountHandles();
16 ...
17 }}
18 public class TelecomManager {
19 List<PhoneAccountHandle> getAllPhoneAccountHandles

() {
20 ITelecomService mService = ITelecomService.Stub.

asInterface(ServiceManager.getService(Context.
TELECOM_SERVICE));

21 return mService.getAllPhoneAccountHandles();
22 }}

Fig. 6: An inter-process service call example.

the processes need to be parsed to build the ObjType database.
To correctly distinguish references variables from different
snapshots, each reference variables is extended into the form
of pid:reference_variable, where pid refers to the
ID of the process from which the snapshot is captured.

A system service provides a client-server interface. Depend-
ing on whether the client and the service are in the same
process, the service call is handled in two different ways.
Handling intra-process service calls. When the client and the
service are in the same process, the service call is made through
intra-process communication. Figure 5 shows an example,
where both the Location Manager Service and User
Manager Service belong to the system_server pro-
cess. The call at Line 4 leads to a service call at Line 10,
which issues an intra-process service call.

Note that UserManager.mService is the type
IUserManager, which is extended by many classes (in-
cluding the Proxy/Stub classes to be introduced below
and UserManagerService). Previous research relies on
expert knowledge to manually specify the dispatch target
of the call at Line 10 to facilitate static analysis [41],
[13], [3], while HEAPHELPER uses the runtime information
provided by the execution context. We thus can find that
the object pointed to by UserManager.mService is the
UserManagerService type, and hence the call is handled
as an ordinary method call. Thus, manual effort are not needed.
Handling inter-process service calls. When a system service
invokes a method of another service in a different process, the
call is handled via an inter-process communication mechanism
named Binder [17]. The system service interface is defined
using the Android Interface Definition Language (AIDL). The



AIDL compiler automatically generates Stub and Proxy
classes that implement the interface-specific Binder-based
IPC protocol. A Stub is an abstract class that implements
the Binder interface and needs to be extended by the actual
service implementation, while a Proxy is used by clients to
invoke the corresponding service.

Figure 6 shows an inter-process system service call
example, where the Telecom Account Registry
(running in the com.android.phone process)
invokes the getAllPhoneAccountHandles method
exposed by the Telecom Service (running in the
com.android.server.telecom process). The
call at Line 15 invokes the method at Line 19. To
perform the service call, the client needs to first
invoke ServiceManager.getService(String)
using a unique string associated with the requested
system service to obtain the Proxy of the service.
For example, in Figure 6, the client first invokes
ServiceManager.getService(TELECOM_SERVICE)
to get the Proxy of the Telecom Service (Line 20), and
then performs the service call via this Proxy. After that,
the Binder marshalls parameters of the service call and
reassembles the objects in the remote process, one thread of
which will execute the corresponding service method.

The functionality of Binder is mainly implemented in
native libraries and the kernel, which cannot be interpreted by
HEAPHELPER. To solve it, we take advantage of the fact that
Android uses AIDL to generate Stub/Proxy for all IPCs. By
parsing the AIDL files, we can get the list of Stub/Proxy
class pairs. Through a simple class hierarchy analysis of the
framework code, we can determine the mapping between each
Stub type and the system service class that has extended the
Stub. Based on the list and the mapping, we automatically
build a hash table containing the mapping between each Proxy
type and the name of the corresponding service class (which
extends the Stub generated together with the Proxy type).

Through this, during the call graph generation,
HEAPHELPER intercepts I*.Stub.asInterface()
(Line 20). Using the Proxy type of the parameter of
asInterface(), it queries the hash table to obtain the
corresponding system service class name, and directly connects
the service call to the method of this service class.

A small number of system services do not use AIDL
to generate their Stub/Proxy classes; instead, manually
implemented custom classes are provided. One example is
the ActivityManagerService (AMS), whose interface is
also called from the native code; thus, a manual implementation
of its Stub/Proxy is provided. We then can add the mapping
between the Proxy and the corresponding system service class
name into the hash table aforementioned.

D. Handling Message Handler

Two messaging mechanisms that are frequently used
by system services are Message Handlers and State
Machines. Message Handlers are implemented through
Binder, so they cannot be interpreted by our tool.

To deal with Message Handler, we first infer the run-
time type of the handler object, which can be obtained from the
ObjType database. We then connect the call to sendMessage
to a call to the destination handler’s handleMessage.

However, only a part of handleMessage is responsible
for reacting to the sendMessage method (determined by the
particular message sent), which is implemented as a switch
statement in handleMessage; we thus perform the path-
sensitive analysis to improve the precision—based on the
message sent by sendMessage, only the functions included
in the corresponding code block of the switch statement in
handleMessage is connected to this sendMessage.

E. Handling State Machine

A State Machine can also be used to send and process
messages. A State Machine sends a message by invoking
sendMessage, while the current state’s processMessage
is called to process a message.

To handle State Machine, we need to connect
the invocation of sendMessage to all possible states’
processMessage, as the current state may vary with
time. A State Machine object contains a field that
points to an mSmHandler object, one field of which,
mStateStack (an ArrayList), is used to identify all possible
states. Specifically, we iterate mStateStack and retrieve
each element. Each element is the StateInfo type, and
contains a field, state, which points to a possible state
(= mStateStack[index].state, where 0 ≤ index <
mStateStack.length). Next, we search for the class type
of the object pointed to by each state from the ObjType
database, and connect mSmHandler.sendMessage to the
code block of each state’s processMessage that processes
the corresponding message sent by the sender (i.e., we also
perform the path-sensitive analysis). This way, we connect the
sender and receiver for messages sent via State Machine.

V. PERMISSION SPECIFICATION ANALYSIS

HEAPHELPER next extracts the permission specification
based on the generated call graph, involving three steps.

A. Identifying Permission Checks

We adopt the method of PScout [3] to identify the
permission checks. There are three types of permission
checks. The first type is checkPermission or its wrapper
functions. Permissions in Android appear as string literals,
which are passed to checkPermission or its wrappers to
check whether the calling app is granted with the particular
permissions. HEAPHELPER searches the call graph for all the
permission checks of this type, and extracts the corresponding
permission string literals, which are used to label the
permission checks. HEAPHELPER can successfully extract
98% of the permission strings; e.g., one of the failing cases is in
ActivityManagerService$PermissionController,
where the permission string is an argument of the method
called from native code and, hence, cannot be resolved.



The second type is methods involving Intent. Two
situations are involved. (1) The required permission is spec-
ified in the manifest file; HEAPHELPER then extracts each
permission and its associated Intent actions from the
manifest file. (2) The required permission is programmatically
coded in the framework methods, including sendBroadcast,
registerReceiver, and their variants; HEAPHELPER then
searches the call graph for these methods, and extracts the
corresponding permission strings and the associated Intent
actions. Through this, HEAPHELPER builds a mapping between
permissions and Intent actions.

The third type is methods involving Content
Providers. (1) The permissions required to read/write to a
content provider can be declared in its manifest file;
thus, HEAPHELPER parses the manifest file to extract the
information, and builds a mapping between permissions and
content provider URIs. (2) The permission can be checked
at runtime by each content provider via invoking
checkPermission, which is handled in a similar way as
the first type of permission check.

B. Identifying Exposed Framework Methods

For each permission check, many methods can reach it; e.g.,
for the call path, A→ B → C → P , where P is a permission
check, A, B, and C are the methods that can reach P . It is
impractical to report all these methods (A, B, and C), as from
the perceptive of app developers, they are only interested in
the required permissions for the methods exposed to third-
party applications. Thus, it is necessary to identify the exposed
framework methods and only report the permission mapping
involving such methods.

Android Framework contains a large number of framework
classes, which expose functionality via Binder interfaces to
the application layer. We thus first locate the framework classes
that are exposed via Binder interfaces, and then identify
the exposed framework methods (including both public and
private, as applications can invoke the private methods via Java
reflection) from these classes.

C. Reachability Analysis

The last step performs a backward reachability analysis for
each permission check, and records every exposed framework
method that can be reached from a permission check.

Similar to PScout [3], the backward reachability anal-
ysis stops if one of the two conditions is met. (1) Any
calls located between Binder.clearCallingIdentity
and Binder.restoreCallingIdentity are irrelevant
for permission analysis, which is a stopping point. (2)
HEAPHELPER stops when it reaches a class or subclass of
ContentProvider; it then extracts the URI string of the
content provider; and the permission mapping is the URI and
the permission included in the permission check where the
reachability analysis starts.

VI. EVALUATION

A. Experimental Settings

We have implemented the system HEAPHELPER, which is
built upon the Java bytecode analysis framework Soot [43].

We first analyze the statistics of various heap snapshots
captured from different Android versions (Section VI-B). We
then compare HEAPHELPER against PScout and AXPLORER
in terms of the accuracy of the generated permission map-
ping (Section VI-C). We next investigate the reliability of
our approach—we conduct experiments based on snapshots
captured at different times and from different devices, and
analyze the consistency of the results (Section VI-D).

The experiments are performed on a machine with an Intel
Core i7 4.0Ghz Quad Core processor and 32GB RAM running
Linux kernel 3.13. We conduct our experiments on three
different devices, including Nexus 4, Nexus 5X, and Nexus
One, with different versions of Android systems.

B. Heap Snapshot Statistics

Once the framework is initialized, we dump the heap memory
snapshots of all the framework processes. Table I summarizes
the statistic results with respect to different Android versions.
As we do not have access to the source code of AXPLORER,
we only compare the statistics to that of PScout.

It can be observed that the call graph generated by our tool
is largely simplified compared to that generated by PScout.
E.g., for Android version 5.0, the call graph generated by
PScout consists of 953,602 edges, while that generated
by HEAPHELPER only contains 406,638. The reason is that
HEAPHELPER extracts the runtime type of the receiving object
of a virtual function call from the snapshot (if contained)
and precisely connects the call to its target, while PScout
considers all subclasses of a virtual method call as receivers.

However, some objects have not been instantiated during
the initialization phase—e.g., function local variables will be
instantiated when the function is executed and the variables
are accessed. In this case, we adopt the points-to analysis to
infer the possible types of the receiving objects. We appreciate
the authors [9] to share their points-to analysis code to us.

Note that although we apply points-to analysis to non-
instantiated variables, our generated call graph—by a novel
and effective combination of dynamic information and static
analysis—is still much more precise than existing work that
relies on pure static analysis approaches.

C. Comparison with Prior Work

We compare HEAPHELPER to PScout [3] and
AXPLORER [4]. Due to space limitation, we focus on
presenting the comparison for Android version 5.0.

I) How many framework APIs check the same permission? We
first seek to understand the number of framework APIs that
check a certain permission. The comparison results are fairly
deviating. To confirm the correctness of our result, we manually
investigate all the deviating cases, and find the following
reasons that cause the differences.



TABLE I: STATISTIC RESULTS OF HEAP SNAPSHOTS DUMPED ONCE ANDROID FRAMEWORK IS INITIALIZED. THE DEVICE IS NEXUS 4.
Android version 4.1 4.2 4.4 5.0 5.1 6.0 9.0

# of objects requested when building call graph 16,042 16,257 16,734 17,867 17,895 18,387 20,024
# of instantiated objects in heap snapshot 5,823 5,882 6,023 6,270 6,017 7,105 7,625
# of call graph edges generated by PScout 2,062,839 1,174,387 2,365,902 953,602 1,028,134 1,424,065 1,861,473
# of call graph edges generated by HEAPHELPER 496,774 403,165 502,354 406,638 419,526 502,381 584,428

TABLE II: COMPARISON BETWEEN OUR RESULTS AND PSCOUT’S
RESULTS BASED ON ANDROID VERSION 5.0.

Permission set # of methods
# of APIs in PScout 7,287
# of APIs in both HEAPHELPER and PScout 1,314
# of APIs in HEAPHELPER and PScout 872with the same permission size
# of APIs in HEAPHELPER that 434have less permission checks
# of APIs in HEAPHELPER that 8have more permission checks

First, PScout includes mappings for unexposed framework
methods. E.g., it includes the mappings for State Machine
methods; however, State Machines are used framework-
internally and their functionality is not exposed to applications;
thus, all the mappings involving State Machine methods
should be excluded, and there are totally 1,692 of such
mappings. Second, it reports mappings for synthetic accessor
methods as well as methods of inner classes, which should also
be excluded, and there are totally 12,368 of such mappings.
Third, for the methods of AIDL-based classes, it counts for sev-
eral times, which, however, should be only counted once, E.g.,
it counts four times for getCompleteVoiceMailNumber
(in Stub, Proxy, manager, service class, respectively), while
only one is actually needed. The problem is probably due to
PScout does not have a proper definition of the exposed
framework methods and includes many unnecessary mappings.
AXPLORER reports higher numbers for

BROADCAST_STICKY and SET_WALLPAPER, which
mainly refers to abstract methods from the Context class
that are implemented in its subclass ContextWrapper and
then inherited by a set of non-abstract subclasses.

We further compare the points-to set of the instanti-
ated objects to their runtime types stored in the heap
snapshot, and find that points-to analysis identifies more
than one possible types for 4,372 objects (69.7%). E.g.,
for the virtual function call to removeCallBacks via
ViewPropertyAnimator.mView, the points-to set of this
object has 36 types, including ViewGroup, WaveView,
TextView, and EditText, etc, while the snapshot stores
only LinearLayout. Thus, AXPLORER, relying on points-to
analysis, still introduces spurious paths in the call graph.

Note that the runtime types of some objects may change as
the framework runs; however, our observation is that given an
API method, the needed permission(s) should not change over
time, as the permission specification should keep consistent,
no matter when and how the method is invoked, which is
confirmed by our experiment (see Section VI-D).
II) How many permissions are checked by the same framework
API? We seek to understand the number of permissions checked

WindowManagerService.

newDisplayContentLocked

...

... ...

ScreenMagnifier.

handleOnRotationChanged

DisplayManagerInternal.

setDisplayInfoOverrideFromWindowManager

DMS$LocalService.

setDisplayInfoOverrideFromWindowManager

Fig. 7: Sub-call graph generated by PScout. DMS represents
DisplayManagerService. The blue dashed lines are spurious
paths causing an extra permission WRITE_SETTINGS to be reported.

by framework APIs. Table II summarizes the comparison result
between PScout and HEAPHELPER. For Android 5.0, (1)
1,314 methods are found by PScout and HEAPHELPER. (2)
Among these 1,314 methods, 872 have the same permission size
in both PScout and HEAPHELPER. (3) HEAPHELPER finds
434 methods with less permissions, and 8 methods with more
permissions, which are confirmed via manual investigation.

For instance, PScout finds more than ten permissions
for TouchExplorer.clear, whereas HEAPHELPER
finds only three, including INTERACT_ACROSS_USERS,
READ_PROFILE, and INTERACT_ACROSS_USERS_FULL.
PScout reports more than nine permissions for
ScreenMagnifier.handleOnRotationChanged,
whereas HEAPHELPER only three. The reason why
PScout reports more permissions is that it builds an
over-approximated call graph that includes too many
spurious paths. E.g., Figure 7 shows the sub-call
graph rooted at the handleOnRotationChanged
method, where one virtual method call is
setDisplayInfoOverrideFromWindowManager.
As PScout considers all subclasses as the targets, the
setDisplayInfoOverrideFromWindowManager
method of the two classes, DisplayManagerInternal
and DisplayManagerService$LocalService, are
both included as the call sites. On the contrary, we use the heap
snapshot to determine the runtime type of the receiving object,
which is DisplayManagerService$LocalService,
and only connect the correct target. The spurious paths (i.e.,
the blue dashed lines in Figure 7), which are included by
PScout but cause an extra permission WRITE_SETTINGS
to be reported, is excluded. There are a plenty of such cases
that PScout fails to identify the correct targets.



TABLE III: STATISTIC RESULTS OF HEAP SNAPSHOTS DUMPED AFTER RANDOM USER INTERACTIONS. THE ANDROID VERSION IS 5.0.

Devices and user interactions Nexus 4 Nexus 5X Nexus One
5m 20m 20m, 4 apps 5m 20m 20m, 4 apps 5m 20m 20m, 4 apps

# of instantiated objects in heap 6,645 7,192 6,822 5,978 6,321 6,014 5,881 6,105 6,262
# of call graph edges generated 406,880 432,320 432,450 406,857 406,732 406,854 406,898 406,762 406,843

Interestingly, we also find 8 methods where HEAPHELPER
finds more permissions than PScout. E.g., PScout
reports one permission CONNECTIVITY_INTERNAL
for invoking NsdService.setEnabled, while
HEAPHELPER reports two, CONNECTIVITY_INTERNAL
and WRITE_SETTINGS. Another example
is SendUiCallback.onSendConfirmed.
PScout reports INTERACT_ACROSS_USERS
and INTERACT_ACROSS_USERS_FULL, while
HEAPHELPER reports INTERACT_ACROSS_USERS,
INTERACT_ACROSS_USERS_FULL, and
UPDATE_APP_OPS_STATS. Moreover, PScout misses
WRITE_SETTINGS for the setTimeFromNITZString
method in the GsmServiceStateTracker class.

We are particular interested in understanding why PScout
misses permissions. As it builds an over-approximated call
graph, theoretically it should not miss permissions. We analyze
the PScout’s code on how it builds the call graph and how it
performs the backward reachability analysis. Our finding shows
that PScout sets up some experience-based stop conditions
for the backward analysis to avoid the path-explosion problem
due to the over-approximated call graph. For example, it stops
when it meets onTerribleFailure; it also stops when the
backward traversal depth reaches 5. However, as HEAPHELPER
builds a more precise call graph (by leveraging the heap
information) with many spurious paths removed, HEAPHELPER
does not stop under such conditions and keeps backtracking
the call graph, and hence, can find more permissions. Besides,
PScout probably does not correctly link some entry point
methods to all methods they can reach, and thus misses some
permissions. Therefore, our analysis yields more precise results.

D. Consistency of Permission Specification

As the dynamic information stored in the heap snapshot may
change as the framework runs, we investigate the consistency
of the permission specification in terms of different snapshots
captured at different times and from different devices. We use
three devices with Android 5.0, including Nexus 4, Nexus 5X,
and Nexus One. After the system was initialized and different
kinds of user interactions were performed, three snapshots were
captured from each device. There are totally nine snapshots.

We first investigate whether user interactions affect the
dynamic information stored in the heap. Table III summarizes
the results; “20m, 4 apps” represents a snapshot is captured
at intervals of 20 minutes and 4 apps are installed during
the interval. It can be observed that user interactions trigger
more objects to be instantiated. E.g., the snapshot dumped
from Nexus 4 after the framework is initialized contains 6,270
instantiated objects (see Table I), and the snapshot dumped
after 5 minutes user interactions (e.g., changing system settings,

storing new contacts) contains 375 (=6,645-6,270) more in-
stantiated objects. One example of the new instantiated objects
is mContentResolver in the PduPersister class, and
its runtime type is ApplicationContentResolver. For
Nexus 5X, the snapshots dumped after 5 minutes and 20 min-
utes contain 5,978 and 6,321 instantiated objects, respectively.
Upon comparing the two snapshots, we find that 5,783 objects
are instantiated with the same type in both snapshots.

Some instantiated objects’ types changed after user in-
teractions. E.g., for Nexus 5X, the mView variable in
the ViewPropertyAnimator class has the type of
CellLayout and LinearLayout in the snapshots dumped
with and without apps installed, respectively; mDrawable in
the ImageSpan class has the type of BitmapDrawable
and VectorDrawable in the snapshots with and without
apps installed, respectively. The differences are mainly due to
various status of the installed apps.

We also analyze how the heap changed cross different
devices. The snapshots dumped from Nexus 5X and Nexus
One after 5 minutes user interactions contain 5,978 and 5,881
initialized objects, respectively. Upon comparison, we find that
there are 5,631 objects whose types do not change in both
snapshots, and 250 objects are only contained in the heap from
Nexus One, and 347 only in the heap from Nexus 5X. Similarly,
for the snapshots dumped from Nexus 5X and Nexus 4 after 5
minutes user interactions, there are 5,547 objects instantiated
with the same type in both snapshots.

We now seek to understand whether different heap snap-
shots lead to different permission specifications. We conduct
experiments on each of the 9 snapshots, and the results show
that the permission specification is consistent.

Several reasons can explain the consistency. First, although
apps can manipulate the values of some system variables in
the framework (e.g., GPS locations, contact information, etc.),
the values of the system variables do not affect the call graph
generation. For example, in Figure 1a, the getProviders
method returns the names of the GPS providers that the calling
app is allowed to access. The framework’s call graph does
not depend on the concrete values of the related system vari-
able (i.e., LocationManagerService.mProviders),
although different provider names may be returned by the
system service call when different providers are installed.

Second, the configurations and statuses of installed and
running applications themselves do not affect the framework’s
call graph. E.g., if an app has been installed, the influ-
ence is that one element would be inserted to the object
Settings.mUserId, an ArrayList storing the information
of all the installed apps with one element for each app. However,
this will not affect the dynamic type of Settings.mUserId,
and thus it causes no impact on the framework’s call graph.



This result confirms our observation that given an API
method, its needed permission(s) should not change over time,
as the permission specification should keep consistent, no matter
whether the method is invoked right after the initialization of
Android Framework or after a long time.

VII. DISCUSSION

A. Applications

Inconsistent Security Policy Enforcement (ISPE) Vulnera-
bilities. A sensitive operation may be reached from different
execution paths enforcing security checks inconsistently, such
a vulnerability is called inconsistent security policy enforce-
ment (ISPE). A system called Kratos was built to such
vulnerability [41]. It first builds an over-approximated call
graph of Android Framework, and then finds all the paths
that can reach the same sensitive operation, and reports it as
an ISPE vulnerability. It can benefit from our work by using
a more precise call graph; false positives originating from a
low-precision call graph could be automatically eliminated.

Static (App) Analysis. Many static analysis techniques have
been proposed to analyze Android app vulnerabilities and
privacy violations. Enabling precise static app analysis requires
to include Android Framework. EdgeMinder [13] analyzes
Android Framework to extract implicit control flow transitions
for the security analysis of apps. DroidSafe [26] distills a
data-dependency-aware model of the Android app API and
runtime from the framework code. One of the building blocks
that these systems rely on is the computation the framework’s
call graph. Most of them either use manual work, or apply
ad-hoc heuristics, or build an over-approximated call graph
of the framework, which are insufficient and imprecise and
allow malicious apps to evade detection. Thus, it is beneficial
to integrate our technique into these analysis systems and build
a more precise call graph to improve the precision.

B. Limitations

Android framework is written in different languages and
mainly implemented in Java. Our approach is designed to
analyze Java code, and will miss the permissions (only a small
part) checked in C/C++ native code.

HEAPHELPER cannot analyze reflection. Android Frame-
work uses reflection in only seven classes. Six are in debugging
classes, and the last one in the View class for handling
animations. But no permission is checked in these cases.

Static analysis cannot handle dynamic class loading as the
loaded classes are only known at runtime. Android Framework
uses the loadClass method in eight classes, which are either
not linked to permission checks, or permissions checks are
made before loading classes; no permission check is missed.

HEAPHELPER leverages the dynamic information in the heap
to generate a more precise call graph of the framework. Some
objects may not be instantiated when the heap is dumped.
Although we apply points-to analysis to non-instantiated
variables, our generated call graph is still much more precise
than existing work that relies on pure static analysis approaches.

VIII. RELATED WORK

There is a large body of security research on permission-
based systems [23], [24], [9], [3], [4], [16], [40], [35] and
in Android security [10], [12], [14], [19], [20], [21], [31].
The permission specification has been a valuable input to
different Android security researches, such as permission
analysis [28] and compartmentalization [39], [42] of third-party
code, studying app developer behavior [22], [44], detecting
component hijacking [33], app virtualization [6], [32], [7],
and risk assessment [38], [27], [47], [46]. The approaches for
extracting Android permission specification can be generally
divided into two categories: dynamic-based, and static-based.
Dynamic-based Approaches. Stowaway [22] extracts the An-
droid permission specification using unit testing and feedback
directed API fuzzing; however, it is very difficult to examine
the entire Android Framework—i.e., it is difficult to achieve a
high code coverage, which is consistent with the well-known
challenge in software testing: even with significant time and
effort invested in testing, a commercial program typically can
only be tested under a small portion. Dypermin [35] also relies
on dynamic analysis and suffers from the same limitation.
Static-based Approaches. Bartel et al. [8] extract the permis-
sion specification from the call graph of the framework. But
their result is incomplete as they only infer permission checks
on the checkPermission function while skipping Intent
and Content Provider functions; in addition, their framework
call graph is over-approximated, causing high false positives.
PScout [3] considers all the permission checks, but it
also builds an over-approximated call graph that introduces
many spurious paths, resulting in unnecessary imprecision.
AXPLORER [4] builds a static runtime model of the framework
by inferring the dynamic types of receiving objects and
connecting the invocations to the corresponding targets; but
the inference is based on points-to analysis, and the inferred
results are not always accurate. In contrast, our work combines
dynamic information and static analysis by leveraging the
dynamic information stored in the heap to generate a more
precise call graph for assisting in the permission specification
analysis and improves the result precision.

IX. CONCLUSION

We introduce the heap memory snapshot assisted program
analysis that leverages the dynamic information stored in the
heap of Android Framework execution to assist in generating
a more precise call graph of the framework. It is a novel
and effective combination of dynamic information and static
analysis. This technique can be integrated into the (existing)
static analysis systems to improve their precision. We have
developed a prototype, and evaluated it on different versions
of Android Framework. Our experiment results show that our
approach improves on the prior work that relies on pure static
analysis, and produces much more precise results.
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